返回 经济法律论文 首页
一种大功率LED照明电源解决方案

  摘 要:介绍采用PFC控制器CM6807和谐振半桥控制器CM6900的350W高效(>90%)高功率因数(>0.95)LED照明电源解决方案。该方案适用于直至1kW的电源供应器,可用于LED照明、LED路灯、大型LED看板和大功率体育场馆照明等。
  关键词:CM6807/CM6900;PFC/LLC控制器;同步整流;大功率LED电源
  美国“能源之星”等规范要求在任何功率电平上的离线式(off-line)LED照明电源具有高功率因数和高能效。对于普通照明用低功率LED驱动电源,采用基于专用控制器IC的单级功率因数校正(PFC)反激式电路拓扑是最基本的解决方案。这种拓扑结构的特点是只使用一个功率开关,无需使用高压电解电容器。对于100~200W的LED照明电源,人们通常采用PFC+反激式两段式电路架构。这种拓扑结构的特点是PFC升压变换器被置于反激式转换器的前端,PFC与反激式转换器各使用一个功率开关。而对于200W以上的大功率LED照明电源供应器,上述两种拓扑结构并不适用。行之有效的解决方案是选择PFC与其电感―电感―电容(LLC)相结合的电路架构。为了实现高效率,主变压器二次侧可以采用同步整流方案。在这里介绍一种采用这种方案的350W LED照明电源设计实例,以供读者参考。
  1 系统技术规格与基本架构
  1.1 350W LED驱动电源技术规格
  (1)输入规格
  AC输入电压:85~264 Vac;
  AC最大输入电流:5A;
  线路功率因数PF:>0.95(230Vac,满载);
  AC电源频率:47~63Hz;
  效率:>92%(230Vac,满载);
  工作温度:50℃;
  工作环境:密闭;
  散热方式:无风扇自然冷却。
  (2)输出规格
  输出电压Uo:36~40V;
  输出电源Io:5~10A;
  电压纹波:≤0.3V;
  电流纹波:<0.1A;
  控制模式:恒定电压/恒定电流。
  1.2 系统组成方框图
  350W LED照明电源主要由EMI滤波器、基于连续导电模式(CCM)功率因数控制器CM6807的PFC升压变换器、基于CM6900的LLC谐振半桥变换器及同步整流器等部分组成,图1为其基本架构方框图。
  2 实际电路
  基于CM6807和CM6900的350W LED照明电源电路如图2所示。我们对系统中各个单元电路作简要介绍。
  2.1 PFC升压变换器与辅助电源
  350W LED照明电源的PFC升压变换器与辅助电源电路如图2(a)所示。
  (1)输入级电路
  输入级电路由EMI滤波器和桥式整流器组成。在图2(a)中,电容C3、C4、C5和C11~C14及电感元件T1、T2等,构成输入EMI滤波器;BR1为桥式整流器;FU1为保险丝;RT1为NTC热敏电阻。EMI滤波器被用作限制和衰减共模与差模噪声,RT1用作限制系统启动时因对大电容C7充电引起的浪涌电流。
  (2)有源PFC升压变换器
  功率因数控制器U1(CM6807)、功率开关VT2、升压电感器L1、升压二极管VD3、输入电容C9/C10、输出电容C7、电流传感电阻R4等,组成DC/DC有源PFC升压变换器。PFC级电路工作在连续模式。输入电流经R5、R8和R13通过U1引脚②检测。输出DC总线电压(395V)经分压器R7、R10、R12和R13采样,馈送至U1引脚FB。U1的引脚④为电压误差放大器输出,C17、C18和C21为补偿网络。通过PFC级的电流被R4感测,并经R11和C20由U1引脚③来检测。U1引脚⑨上的驱动输出推动VT1/VT3和VT2。PFC升压变换器的作用是在桥式整流器BR1的输入端产生一个与AC输入电压趋于同相位的正弦电流,能够满足IEC61000-3-2标准规定的谐波电流限制要求,系统功率因数远高于0.95,并且在85~264V的AC输入电压范围内能够输出一个395V的稳定DC电压。
  (3)启动电路与偏置电源
  R5、R8、R6、R9、VT4、VD4和C16等,组成U1引脚⑧上的启动电路,U1一旦启动,PFC进入操作状态,U1引脚⑧则由L1引脚③与④之间的辅助绕组、C1和C2、VD1和VD2、R15、VZ1、VT5及C16等组成的偏置电源供电。
  2.2 LLC半桥谐振功率级
  LLC半桥谐振功率级电路如图2(b)所示。该功率级主电路由图2(c)所示的控制电路来控制。在图2(b)中,功率开关VT6、VT8、电容C23、电感L3以及变压器T3引脚③与引脚⑥之间的初级电感组成半桥LLC串联谐振电路。T3二次侧上的VT7和VT9组成同步整流器电路,可使LLC谐振半桥变换器的工作效率达96%以上,比传统LLC谐振半桥功率级的效率提高4%~5%。
  C25/C26、L4和C27/C28构成LC滤波电路,可以保证DC输出电压纹波小于300mV。R23为输出电流感测电阻。电源的DC输出可以驱动350W的LED模块或阵列。
  2.3 基于CM6900的恒压/恒流(CV/CC)控制电路
  采用CM6900作半桥谐振控制器的CV/CC控制电路见图2(c)。
  (1)偏置电源
  图2(a)中L1引脚⑤与⑥之间的辅助绕组,与图2(c)中的C29/C30、VD7/VD8、VZ2、VT14、R27和C31等,组成输出12V的稳压电源,为U2(CM6900)和运放U3(LM358)等提供偏置。
  (2)控制与驱动电路
  在图2(c)中,U2引脚⑨外部的R32和C38设定振荡器频率。LED驱动电源的输出电压(+40V)经电阻分压器R26、R27和PR1取样,反馈到U2的引脚②,以执行输出电压调节。流经输出电流感测电阻R23[见图2(b)]的电流经U3B放大150倍,并经R42和R48分压后,由U3A作缓冲器加入到输出电压的反馈回路,使输出电流被控制在恒定值。VT19的门极与地之间连接一个开关S。当S关断时,VT19导通,U3B的输出被R42和R48、R46分压至2.5V,使LED驱动电源输出10A的最大恒流。当S接通时,VT19截止,U3B输出被R42和R48分压至1.25V,LED驱动电源输出电流则为5A。
  U2引脚 和 上的输出,通过晶体管VT10/VT11和VT12/VT13来驱动变压器T4。T4的二次绕组输出驱动图2(b)半桥中的VT6/VT8。U2的引脚 和 上的输出,通过VT14/VT15和VT16/VT18来驱动图2(b)中的同步整流器VT7和VT9。
  3 结束语
  采用CCM功率因数控制器CM6807和谐振半桥控制器CM6900的350W LED电源供应器,同时采用同步整流方案,可以提供CV/CC控制,实现高于0.95的功率因数和高于90%的效率。该设计方案适用于100~1000W的电源供应器,可应用于LED照明、LED路灯、大型LED看板以及体育场馆LED照明等。
  参考文献
  [1] 毛兴武,等.功率因数校正原理、IC及其应用设计[M].北京:中国电力出版社,2007.
  [2] 毛兴武,等.新一代绿色光源LED及其应用技术[M].北京:人民邮电出版社,2008.
  [3] 毛兴武,等.LED照明驱动电源与灯具设计[M].北京:人民邮电出版社,2011.
  作者简介
  毛兴武(1948-),男,工程技术应用研究员,研究方向为功率因数校正、新型电源、LED与电子照明等。


【相关论文推荐】
  • 一种大功率LED照明驱动电源的设计与研究
  • 一种高转换效率高功率因素的大功率LED电源研究
  • 一种新型大功率LED矿灯的探究
  • 一种新型大功率电源浪涌电流抑制电路的研究
  • 一种用于TR组件功放的大功率脉冲电源设计
  • 一种大功率半导体激光器的电源及温控系统设计
  • 一种基于ARM和FPGA的高性能大功率直流电源
  • 大功率LED照明驱动匹配方式研究
  • 大功率LED路灯驱动电源的设计
  • 在线服务

    服务承诺