在线客服

咨询热线

秸秆环保节能材料性能的研究

作者:未知

  摘要:对秸秆水泥基复合材料的性能进行了研究,利用秸秆制成的轻体保温砌块具有轻质、高强、保温性能好、吸水率低、抗冻融性能高、防火、防水、防虫鼠害及环保节能等特点,成本低廉,实现了北方寒冷地区单一墙体材料节能50%(240 mm厚)的目标。
  关键词:秸秆;水泥基复合材料;环保节能;秸秆轻体保温砌块
  绿色化是新型建材的发展趋势,绿色建材是指具有环保、节能、健康、安全、可靠、可再生等属性的建材,其核心内容是采用清洁的技术,从原料选用,产品制造,使用过程或再循环,以及废弃物处理等环节中进行污染控制设计,选用无毒和低毒的原材料,生产过程中尽可能减少污染的产生,副产物尽可能的做到回收利用,产品在使用过程中,不应对环境和人类健康产生污染和威胁。
  1 实验部分
  1.1秸秆纤维
  实验采用的秸秆纤维是经破碎的玉米秸秆,其主要成份是SiO2、木质素纤维素等。玉米秸秆颗粒均匀,粒度适中,湿润后体积不膨胀,易于压实,这有利于拌和均匀和提高混合料的密实度。而采用的水泥和表面改性剂均为弱碱性物质,因此,玉米秸秆与水泥及表面改性剂拌和,其混合料的化学性能较稳定。植物纤维玉米秸秆,既可起增强作用,又可减轻复合材料的质量,使其具有隔音、隔热性能。
  玉米秸秆在破碎后,形成窄而薄的纤维状态,长径比大的纤维含量大,加入一定的助剂时与水泥基体混合均匀、充分,且结合状态好、强度高。秸秆成分见表1。
  1.2 水泥
  以波特兰水泥(硅酸盐水泥)为基体的植物纤维水泥材料存在耐久性问题,在碱环境中,植物纤维的耐久性下降。Gram[1]认为,水泥基材孔隙中的高碱性液相对剑麻纤维有侵蚀作用,Velpari等将黄麻纤维浸泡在pH=13的波特兰水泥料浆的滤液中30 d,发现纤维的抗拉强度由50 MPa降至12 MPa。很多研究者认为,这可能与Ca(OH)2在纤维孔隙内结晶有关。波特兰水泥料的pH值一般都超过13,避免植物纤维破坏的方法之一是,把水泥的碱性降到pH(12~12・5)。由于硅酸盐水泥的碱性很高,所以不宜选用硅酸盐水泥。实验采用低碱性的氯氧镁水泥。
  氯氧镁水泥也称Sorel水泥或镁质水泥,是一种气硬性胶凝材料。它有许多性能优于波特兰水泥,如不需要湿养护,防火性能好,导热系数小,耐磨性好,早期强度高、耐油、抗普通盐和硫化物侵蚀性能也相当好。镁水泥的水化产物主要是:5 Mg(OH)2・MgCl2・8H2O(简称5・1・8相或相5)和3 Mg(OH)2・MgCl2・8 H2O(简称3・1・8相或相3),是由活性的MgO和MgCl2水溶液发生水化反应形成的。因此,提高镁水泥的耐水性主要是提高5・1・8相和3・1・8相的稳定性。
  (1)氧化镁。实验用的是轻烧镁粉,是用菱镁矿石(MgCO3)经750℃~850℃煅烧后再磨细而成,是一种浅黄色的粉末。其物理性能如下:密度3・2 g/cm3,细度120目/cm2筛余量1・5%。化学成分如下:MgO为81・4%;CaO为1・2%;烧失量为8%。
  (2)卤粉(块、片或粒状)。卤粉应易溶于水,不溶解的沉淀物<0・5%,MgCl2≥45%,SO42-<2%,NaCl<2%。
  1.3 磷酸
  采用天津市化学试剂三厂生产的磷酸,其化学成分如下:H3PO4含量不少于85%;灼烧残渣0・2%。
  1.4 粉煤灰
  粉煤灰是火力发电厂煤粉燃烧后剩下的灰分,是工业废料,含有相当高的无定性硅质材料。粉煤灰是由各种颗粒机械混合而成的群体,其中多为球形玻璃体,比表面积较大,其矿物组成主要是玻璃相、莫来石相、石英、赤铁矿、磁铁矿及少量未燃烧碳粒。主要化学成分如下:Loss:7.78%;SiO2:59.93%;Al2O3:20.16%;Fe2O3:4.24%;CaO:0.92%;MgO:1.45%。采用干燥磨细粉煤灰。
  1.5 硅藻土
  采用吉林长白硅藻土。我国是世界上硅藻土矿大国之一,有丰富的硅藻土资源,全国保有储量6 636万t,远景储量5亿t,可开采一千年以上。
  吉林长白硅藻土化学成分如下:SiO2:79.80%;Al2O3:4.09%;MgO:0.16%;CaO:0.3%;TiO2:0.2%;烧失量:9.70%。实验采用经过600℃煅烧的硅藻土,由于有机质被烧掉,使硅藻土相对富集,孔隙度增大,比表面积提高,活性显著改善。
  1.6 超细矿渣
  通化钢铁集团超细粉磨厂生产,灰白色粉末状、高性能混凝土掺合料。矿渣粉比表面积:8 000 cm2/g。化学成分见表2。
  1.7 其它外加剂
  (1)脲醛树脂。乳白色液体。
  (2)有机硅(JHG-621甲基硅酸钠)。外观:淡黄色液体;比重:1・20~1・26;游离碱(%):10;甲基硅酸钠(%):20;氯化钠(%):3。
  (3)铁矾(FeSO4・7H2O)。含量<99・0%,
  (4)标准砂:采用湖南平潭产的标准砂。
  1.8 耐水性实验过程
  (1)胶砂强度检验。根据GB 177-85《水泥胶砂强度检验方法》,进行胶砂强度试验(对于氯氧镁水泥浆体来说,其用液量为达到标准稠度时MgCl2溶液用量)。
  (2)抗水性能试验。抗水性用软化系数表示。
  (3)扫描电子显微镜。采用JEOL日本电子株式会社生产的JSM-5500 LV扫描电子显微镜。
  2 结果与讨论
  2.1 秸秆掺量对复合材料力学性能的影响
  从图1~图3可以看出,随着秸秆掺量的增加,复合材料的28 d抗折强度在一定范围内有所提高。这是因为加入的秸秆能与胶凝材料很好的粘结,对材料基体起到增强的作用;但秸秆掺量超过一定的范围,由于体系内没有足够的胶凝材料来包裹它,这样抽出物大量析出,影响了界面的结合强度,所以,当秸秆掺量过大时,抗折强度也就会降低;28 d抗压强度就随着秸秆掺量的增加而降低。但从总整体上看,随着秸秆掺量的增加,复合材料的折压比逐渐增大,说明材料的脆性下降,韧性增加。   2.2 超细矿渣对复合材料力学性能的影响
  图4~图6是秸秆掺量为10%、树脂掺量为2%,超细矿渣掺量对复合材料力学性能的影响.加入的活性SiO2,在氯氧镁浆体中能与MgO反应,生成水硬性的MgSiO2,而使镁水泥的结构稳定性和耐水性提高。
  2.3 脲醛树脂对复合材料力学性能的影响
  图7~图9是秸秆掺量为10%、矿渣掺量为10%,树脂掺量对复合材料力学性能的影响。由于脲醛树脂与秸秆的粘结强度较高,且与镁水泥的界面结合较致密,加入树脂后可以提高复合材料的强度;当树脂的掺量为2%,抗压强度和抗折强度达到最大值.随着树脂掺量的增加,抗折强度缓慢降低,抗压强度大幅度降低,折压比增高。这是由于树脂与氯氧镁水泥浆体浑然一体一起浸透粘接纤维,包裹和填充在纤维的表面和空隙中,提高了对纤维的握裹力。树脂胶乳分子内和分子间的活动性大,具有一定的柔韧性和弹性,当受到应力作用时,可以吸收一定的能量,减缓因应力引起的开裂破坏.树脂胶乳加入到氯氧镁水泥中后,构成了胶体、晶体、纤维交错连生的整体,起到了强化界面的作用。
  2.4保温性能
  通过导热系数测定仪测得材料的导热系数,精确到0.001.从图15可以看出,随着秸秆掺量的增加,复合材料的导热系数不断降低,即材料的保温性能随秸秆掺量的增加而提高.从秸秆的微观结构中可以看到,秸秆为多孔结构,当其被镁水泥的水化产物包裹后,这些孔隙就被封闭起来,这样的结构无异于其它保温材料的微观结构,所以,加入秸秆同样可以起到保温的作用。
  3 利用秸秆生产轻体节能保温砌块的研究
  秸秆轻体节能保温砌块,芯材以破碎玉米秸秆为主要原材料,以改性耐水镁水泥为胶凝材料,配以调凝剂、抗水剂、防水剂、防腐剂及各种改性外加剂、活性粉煤灰等,芯材两侧配以保护层。项目处于国际先进水平,取得了突破性的创新性研究成果,秸秆轻体保温砌块具有轻质、高强、保温性能好、吸水率低、抗冻融性能高、防火、防水、防渗、防虫鼠害等特点,成本低廉,实现了北方寒冷地区单一墙体材料节能50%(240 mm厚)的目标,现已申报国家发明专利。
  4 结论
  从上文可以得出结论,利用秸秆制成的轻体保温砌块具有轻质、高强、保温性能好、吸水率低、抗冻融性能高、防火、防水、防渗、防虫鼠害等特点,成本低廉,实现了北方寒冷地区单一墙体材料节能50%(240 mm厚)的目标。
  参考文献:
  [1] 张潇立,汤晨,詹小泉,张新华. 复合保温墙体隔热性能研究[J]. 科技创新导报. 2009(32)
  [2] 毛广志. 建筑节能与可再生能源利用[J]. 科技信息. 2009(30)
  [3] 刘琦华,侯新平. 外墙外保温体系及其保温隔热材料浅析[J]. 科技创新导报. 2009(27)
论文来源:《基层建设》 2014年27期
转载注明来源:https://www.xzbu.com/1/view-11797875.htm