纳米技术及纳米材料在纺织品中的研究与应用
作者 : 未知

  摘 要:当前纳米技术与纳米材料的发展为纺织业提供了新的机遇,用先进的纳米技术制造出来的新纤维、新服装面料,正在推动着传统的服装行业向高科技产业转化。如今与纺织领域密切相关的是纳米技术在服装面料用功能纤维上的研究。主要是纳米技术在服装用抗菌纤维、抗紫外线纤维、远红外纤维、阻燃纤维、防电磁波辐射纤维等方面的应用。
  关键词:纳米技术 服装面料 纺织品
  
  1、纳米技术在服用抗菌纤维中的应用
  1.1 抗菌材料的研究意义
  随着人们生活水平的提高,各种不同功能性纤维不断涌现,纳米抗菌卫生材料及制品已逐渐为人们所接受。伴随巨大的商业利益、开发和应用纳米无机抗菌剂的抗菌纤维己成为服装服饰行业发展的主要方向之一。
  抗菌防臭加工通常是采用具有抗菌、防霉能力的加工药剂处理纤维制品的加工技术。加工的目的有二:一是对纤维材料本身加以保护,包括防止纺织纤维表面附着杂色、变色、脆化和对在贮藏中的纤维制品的防微生物保护等;二是对穿着者和使用者的保护,包括预防传染病、防止织物产生恶臭、防止袜子上水虫菌繁殖、防止婴儿尿布疹、保护卧床病人和老龄者的皮肤等。抗菌材料不仅用于制作手术服、护士服和手术巾等医疗用品.还可织制抗茵、防臭的成衣、内衣、外装、鞋袜、睡衣、围裙、床单、沙发布等高级生活用品。
  1.2 纳米无机抗菌剂的作用原理
  无机系列抗菌剂包括金属元素、氧化物和多种化合物。无机抗菌剂具有热稳定性强、功能持久、安全可靠的持点。
  纳米无机抗菌剂是将具有抗菌作用的成分Ag+、Cu2+、Zn2+等纳米微粒离子及其化合物通过物理吸附离子交换等方法,将银、铜、锌等微粒或纳米级金属(或其离子)微粒固定在沸石、硅胶等多孔材料的表面制成抗菌剂,根据与金属离子结合的材料的不同,抗菌剂种类不同,但是在各种无机抗菌剂中起抗菌作用的仍然是各种金属离子,其他成分起载体的作用。纳米二氧化钛、纳米氧化锌等光催化杀菌剂,通常表现出超过传统抗菌剂(即仅能杀灭细菌本身)的性能。
  对于金属离子的抗菌机理,主要有两种解释:一种是依靠在自然界中存在的一些金属离子如银离子等金属离子的缓释。抗菌产品在使用过程中,抗菌剂中的金属离子被缓慢释放出来,由于银等在很低的浓度下即能破坏细菌的细胞膜或细胞原生质活性酶的活性,因此具有抗菌作用。不同的金属离子对不同的有害细菌的作用效果不一样。
  对于纳米半导体,当粒子细化到纳米尺度时,光生电子和空穴的氧化还原能力大大增强,受阳光和紫外线的照射时,纳米二氧化钛和纳米氧化锌等抗菌剂在有水分和空气存在的体系中能自行分解并释放出自由运动的电子(e-),同时留下带正电的空穴(h+),其主要反应为:
  ZnO/ TiO2+hv→e-+h+
  e-+O2→・O2-
  h+H2O →・OH+H+
  生成的带羟基的自由基・OH和超氧化物阴离子自由基・O2-都非常活泼,化学活性极强,能与多种有机物发生反应(包括细菌内的有机物及其分泌的毒素),从而将细菌、残骸和毒素一起杀灭,达到消除之目的。
  对于细菌,静杀菌顺序为:
  Ag+>Co2+>Ni+≥A13+≥Zn2+≥Cu2+=Fc3+>Mn2+≥Sn2+>Ba2+≥Mg2+≥Ca2+
  对于霉菌,静杀菌顺序为:
  Ni+≥Cu2+≥Co2+≥Zn2+=Ag+=Fe3+=Mn3+≥Ba2+≥Mg2+≥Ca2+
  杀菌作用的顺序为:
  Ag+>Cu2+≥Fe3+=Sn2+≥A13+≥Zn2+≥C02+
  由此可见,Ag+杀菌效果最好.Cu2+、Fe3+虽亦有较好的杀菌效果,但这两种离子都明显带有颜色,不利于应用。
  另一种是活性氧抗菌机理。半导体材料的抗菌剂在用能量大干其导带宽度的紫外线照射下吸收光能,使得导带上的电子被激发分解出能自出移动的、带负电的电子的同时也在价带上产生氧化能力很强的空穴。与水或空气作用,在有02和H20存在的条件下,导带上被激发的电子就会被氧分子捕获,产生高化学活性的活性氧自由基,而活性氧自由基极不稳定,可迅速通过歧化反应转化为较为稳定的H2O2、,H2O2作为一种活性氧化剂可以进一步作多种形式的分解,产生氢氧自由基,具有很强的氧化还原作用,从而产生抗菌作用。
  
  2、纳米技术在服用抗紫外线纤维中的应用
  2.1 纤维抗紫外线的方法
  在纤维和织物中添加屏蔽紫外线的纳米级物质微粒主要有两类:一类是起反射紫外线作用的物质,习惯上称为紫外线屏蔽剂,通常选用一些金属氧化物的粉体;另一类是指对紫外光有强烈的选择性吸收,并能进行能量转换而减少它的透过量物质,习惯上称为紫外线吸收剂,通常是一些无机材料和一些有机化合物。吸收剂在吸收紫外线的能量后,转变为活性异构体,随之以光和热的形式释放这些能量恢复原分子结构。这着重介绍纳米无机材料防紫外线助剂。
  材料达到纳米尺度后,比表面积增大.表面原子数、表面能和表而张力随粒径的下降急剧增加,表现出小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等待点,导致材料的各项性能不同于正常粒子。金属氧化物粉体达到纳米级后,金属氧化物则表现出了抗菌、杀菌功能以及吸收紫外线功能等。纺织纤维中添加无机材料的关键是材料的粒径大小以及添加量问题,材料的粒径过大,添加量过高,都会影响纺丝的性能指标。粒径达到纳米级,添加少量就会达到同样效果,同时纺丝性能亦不会受到影响。纳米无机材料与普通无机材料的比较如表1所示。
  紫外吸收剂用得最多的纳米无机材料,包括纳米二氧化钛、纳米氧化锌、纳米二氧化硅。纳米三氧化二铝,纳米云母,纳米氧化铁以及部分纳米复合材料等,它们都有屏蔽UV―A、UV―B波长范围内的紫外线的特征。
  2.2 抗紫外线纤维在服装面料上的应用
  防紫外线纺织品的品种繁多。各国现阶段所生产的抗紫外线功能的服装为运动衫、罩衫、制服、职业服、游泳衣、童装、衬衣、野外作业服、裙装等.这些产品能够有效地为人体提供保护。女士非常注重皮肤保养,惟恐皮肤被紫外线所伤害,所以夏季具有防紫外线功能的轻薄的女装面料市场前景看好。除了女装面料之外,其他诸如具备防紫外线功能的遮阳幅、长筒袜等也会是较好的卖点;男士对这种防护功能的纺织品同样有着潜在的需求,经过防紫外线加工的了恤衫、衬衣、长短裤等男用服装的市场前景不可估量;运动服和休闲服是户外经常穿着的服装,如果生产加工出防紫外线的运动服以及休闲服(包括泳装、网球杉、高尔夫服、滑雪衫、T恤衫等),将会是市场的另一热点;在户外进行作业所需要的工装如野外作业服、渔业作业服、农业作业服等同样需要具有防紫外线的功能。
  
  3、纳米技术在服用远红外纤维中的应用
  具有远红外功能的纤维在日常生活中有着重要的应用地位,它是一种通过高效吸收和发射远红外而具有保温、改善微循环系统、促进血液循环等保健功能的新型纺织纤维。远红外纺织纤维的创意来自于日本陶瓷业的奇想.从而开始了纤维与远红外物质的结合。由于超细陶瓷粉末具有吸收外界远红外线,并向人体发射远红外线的积极的保温作用,因此使得纺织纤维具备了促进血液循环,调节新陈代谢.减小水分子缔合度,提高细胞活性的保温保健功能。
  3.1 远红外材料作用机理
  远红外是波长在2.5―1000 微米的电磁波辐射,具有热效应。远红外纤维所用低温远红外材料的远红外辐射机理是其自身的晶格振动。当材料从环境或人体热量吸收能量之后.其分子中的原子或原子团处于高能量的激发状态,当原子或原子团从高能量的振动状态向低能量状态转变时,就会产生波长2.5―25微米的远红外辐射。
  另外,纳米材料之所以能作为红外吸收材料,主要是因为纳米材料的尺寸远小于红外及雷达波波长,因此对这种波的透过率比常规材料要强得多,而纳米材料的比表面积比常规粗粉大3―4个数量级,对红外线和电磁波的吸收率也比常规的材料大得多,这就大大减少了波的反射率,使得红外探测器和雷达接受到的反射信号变得微弱。这一性质使其具备做军用服装用料。
  
  4、纳米技术在服用阻燃纤维中的应用
  4.1 纺织品阻燃的意义
  纺织品是与人类生活、生产工作环境紧密相关的,它不仅给人们带来了前所未有的舒适与方便,同时也带来了潜在的火灾隐患。据统计,全世界每年发生的火灾给人类生命财产造成了巨大损失,因此对纺织品进行阻燃整理有着非常重要的意义。
  4.2 纤维及纺织品的阻燃方法
  纤维及纺织品的阻燃方法技生产过程及阻燃剂的引入方法,大致分为原丝阻燃改性和阻燃后整理两类。具体可分为共聚法、共混法和后处理法。
  (1)共聚法
  共聚法是在纤维聚合物分子结构上引入具有改善成纤高聚物热稳定性的芳环或芳杂环,或把含有磷、卤、硫等阻燃元素的纳米级化合物作为共聚单体引入列大分子链巾,然后再把这种阻燃成纤高聚物用熔融纺丝或湿纺制成阻燃纤维.进而织制成纺织品。目前以这种方法生产的阻燃纤维有阻燃腊纶、阻燃涤纶等。这些纤维,出于阻燃剂结合到纤维大分子链上,使其具有持久的阻燃性能。但聚合、纺织及后加工处理工艺须适当变动,其对纤维的物理机械性能及服用性能也有着显著的影响。
  (2)共混法
  共混法是将纳米级阻燃剂加入到纺丝熔体或浆液中以纺制阻燃纤维的方法。它要求阻燃添加剂粒度细,与树脂相密件好,能经受高温,具有良好的稳定性、不会凝聚等等o
  (3)后整理法
  后整理法是通过吸附沉积、化学键合、非极性范德华力结合及站台等方法,将阻燃剂固着在织物或纱线上面而获得阻燃效果的加工过程。
  4.3 纳米技术在共混阻燃改性纤维中的应用
  将纳米阻燃剂加入纺丝熔体或浆液中纺制阻燃纤维的方法,工艺简单,对纤维原有性能的影响较小.阻燃持久性虽不如共聚改性,但比后整理法好得多。使用的添加型阻燃剂粒度要纲,与聚合体相密性好,能经受熔体的纺丝温度或在原液中有良好的稳定性,不会凝聚,不溶了凝固浴。
  若采用皮芯型复合纺丝工艺,使阻燃剂位于纤维芯部,普通聚合体为皮层,则既可防止卤系阻燃剂过早地分解出卤化氢离开火焰影响阻燃性,又能保持纤维原有的外观、白度印染色性,比均相共混纺丝效果好。
  4.3.1 纳米改性阻燃聚丙烯纤维
  共混改性阻燃PP纤维的阻燃剂多选用溴系或磷系阻燃剂,制成阻燃母粒,在纺丝时按一定比例与聚丙烯切片共混。该方法因添加量少、成本低、工艺简单,对纤维的物理机械性能影响小,制得的阻燃纤维比普通丙纶手感柔软。因此,国内外都采用此方法对丙纶进行阻燃处理。
  4.3.2 纳米改性阻燃聚酯纤维
  目前占领国际阻燃涤纶市场的均是磷系阻燃剂,它属于固相阻燃机理,燃烧时发烟量小,对设备无腐蚀。阻燃涤纶的生产也多采取先制造阻燃母粒.然后再与切片共混,熔融纺丝,工艺流程与聚丙烯纤维生产基本相似。
  
  5、结论
  1)纳米技术是在纳米级这个极微小世界内进行研究的技术。纳米技术在纺织品领域的应用被公认为是高新技术的最重要源头之一,纳米技术在纺织品领域的发展也将对广大的企业和消费者产生影响。
  2)纳米材料具有普通材料所不具备的优良特征,虽然纳米技术仍处于发展初期,但事实证明纳米技术是一个可以改善纺织品性能的有用工具,随着纺织品性能的提高是,附加值和附加收入也会增加。
  3)纳米技术在纺织品领域虽正处于起步阶段,但充满机遇与挑战的纳米技术是未来发展的必由之路,它在纺织领域中有着极其广阔的发展前景。
  
  参考文献
  [1] 许并社等.纳米材料及应用技术.化学工业出版社,2004.1.
  [2] 顾宁,付德刚,张海黔等.纳米技术与应用.人民邮电出版社.2002.4.
  [3] 第二届功能性纺织品及纳米技术应用研讨会论文集.2002.5.21-23.

文秘写作 期刊发表