您好, 访客   登录/注册

关于二维层状纳米材料性能的若干研究

来源:用户上传      作者: 付秀玲

  摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
  关键词:纳米材料化工领域 应用
  
  纳米材料的结构由表面(界面)结构组元构成,粒径介于原子团簇与常规粉体之间,一般不超过100nm,与电子的德布罗意波长相当。粒径越小的纳米材料,其界面组元的比值越高,低动量电子散射量越大。纳米材料的界面组元中含有相当量的不饱和配位键、端键及悬键。由于不同的纳米材料各具独特效应,如界面效应、小尺寸效应\量子尺寸效应以及宏观量子隧道效应等,进而导致在声、光、电、磁、热、化学作用及力场下,呈现各自不同的特异性能,从而作为吸波材料(隐型材料)、高性能磁记录材料、磁性液体、复合材料、超导材料、新型高效催化剂、发光材料、特种涂料及新型医用材料等逐步应用于国民经济诸多领域。
  一、纳米材料在化工行业中的应用
  1、在催化方面的应用
  催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
  纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子――空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
  2、在涂料方面的应用
  纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。
  3、在精细化工方面的应用
  精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。
  二、二维层状纳米材料的性能与特征
  1、二维层状纳米材料的结构可控性
  因纳米LDHS的特殊层状结构及组成、其在以下方面具有可调控性:
  1)层板化学组成的可调控性
  纳米LDHS的层板化学组成可根据应用需要进行调整。在一定范围内调变原料配比,层板化学组成则发生变化,进而导致层板化学性质、层板电荷密度等相应变化;
  2)层间离子种类及数量的可调控性
  根据应用需要,利用主体层板的分子识别能力,采用插层或离子交换的方式进行超分子组装,可改变其层间离子种类及数量,进而使纳米LDHS的整体性能发生较大幅度变化;
  3)晶粒尺寸及其分布的可调控性
  控制纳米LDHS的合成条件,可在20-60纳米范围内精准调整晶粒尺寸,同时使晶粒尺寸分布窄化,达到均匀分散。
  2、层状纳米材料的结构与性能
  充分利用以上各调控因素,可制备得到具有如下特征的层状结构纳米材料:
  1)多功能性
  不同客体插入纳米LDHS层间后,可组装得到具有不同应用性能的纳米层柱材料,如纳米选择性红外吸收剂、纳米选择性紫外阻隔剂、纳米杀菌防霉剂、纳米热稳定剂、环境友好纳米催化剂、安全型纳米阻燃剂、缓释型纳米除草剂、红外和雷达双功能纳米隐形材料等,可广泛应用于合成材料、建筑材料、石油化工、涂料、农药及军工等行业,产业关联度高,应用空间极为广阔。
  2)低表面能
  层状纳米材料因纳米LDHS层状结构的特殊性,表现出较低的表面能。这一特征使得制备时无需采用昂贵的辅助剂(如有机溶剂、偶联剂等)及高能耗的生产装备(如喷雾干燥等)便可得到具有纳米尺寸的层状材料LDHS,同时因其较低的表面能,在实际应用时易于均匀分散,不易聚集。
  3)几何结构效应
  LDHS层状材料主体二维层板结构及纳米尺寸,使其在应用时表现出独特的性能。因主体层板间的弱相互作用在外力条件下极易被打破,应用于涂料时表现出优异的触变性能;层状材料主体层板剥离后,可以纳米尺寸均匀分散至合成材料本体,这一特点在薄膜类产品中可得到充分体现,其结构是使复合膜的力学性能大幅度提高,同时具备对小分子迁移的阻隔能力(如PVC中的增塑剂、农膜中的防雾滴剂等);控制制备条件,可使层状材料具备规整的介孔结构(10-50nm),其在作为催化剂时,表现出对反应物、中间产物和产物的优异择形性能等等。
  4)结构记忆效应
  纳米LDHS旦有独特的“结构记忆效应”,即经一定途径改变其结构后,在一定条件下其又可逆地恢复至原有结构。利用这一特点,可在纳米LDHS层间插入满足设计要求的害体、进而组装得到所需的功能性层柱纳米材料;又可将组装得到的功能性层柱纳米材料置于某种有利于结构恢复的环境中,在外界条件的促进下,使其定时、定量释放出层间客体。如层柱型除草剂,便可在富含水、空气(主要利用其中的C02)的条件下,按作物生长要求缓慢释放除草剂,以避免除草剂流失所产生的污染及药害。
  5)界面效应
  采用有机分子对纳米LDHS进行插层后,一般有机分子链对主体层板具有一定程度的缠绕作用,这种作用实质上是对无机层状材料的有机化,而有机化程度可随插层客体种类及数量而定。因此,针对不同的应用目标,选择不同的插层客体,可获得理想的界面效应。
  纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。


转载注明来源:https://www.xzbu.com/2/view-425021.htm