您好, 访客   登录/注册

浅析光纤通信技术的发展趋势

来源:用户上传      作者:

  【摘要】光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信和军用通信等领域。本文主要综述我国光纤通信研究现状及其发展。
  【关键字】光纤通信核心网接入网光孤子通信全光网络
  
  光纤通信最大的技术优点是信息容量大,且光纤的损耗低、传输距离长;光纤通信不易被电磁干扰,对信息的保密性能好;可以有效节约有色金属;光缆尺寸小,便于安装和运输。在这几十年的发展历程中,光纤通信已经成为现现代通信技术的重点。光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
  
  1光纤通信的特点
  光纤通信是利用光作为信息载体、以光纤作为传输媒介的通信方式。从原理上看,光纤通信的基本物质由光源、光纤和光检测器构成。光纤是用玻璃材料构造的光导纤维,绝缘体性非常好,不会有接地回路的问题;光纤之间基本没有串绕现象,信息传输安全性保密性好;光纤的芯很细,传输系统所占空间小,节省空间。在光纤通信系统中,光波频率的频率高,光纤的损耗低,故光纤通信的容量要非常大。概括起来说,光纤通信的特点体现在以下几点:
  1.1频带极宽,通信容量大
  光纤大约可以利用50000GHz传输带宽,光纤通信系统的容许频带(带宽)是由光源的调制特性、调制方式和光纤的色散特性决定的。比如单波长光纤通信系统通常采用密集波分复用等复杂技术,来解决终端设备的电子瓶颈效应的问题,使光纤带宽发挥应有的优势,进而增加光纤传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到10Gbps。
  1.2损耗低,无中继设备,传输距离长
  目前通信中使用的石英光纤损耗是所有传输介质中最低的,可低于0~20dB/km;而非石英系统光纤损耗更低,理论上损耗可低至10-9dB/km。因此,光纤通信系统跨越的无中继距离更远,使中继站数目的减少,这就降低了系统成本和复杂性。
  1.3抗电磁干扰能力强
  光纤原材料是由石英制成,绝缘性好,不易被腐蚀。故光波导对电磁干扰有很强免疫力,它不受雷电、电离层的变化和太阳黑子活动等自然电磁的干扰,也不受人为释放的电磁干扰,这对于通信材料来说,是个很大的优势。除以上特点之外,还有光纤径细、重量轻、节约空间、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,使其应用的范围也越来越广泛。
  
  2光纤通信的应用和发展
  2.1光纤通信的应用
  2.1.1公共服务通信系统的应用
  光纤通信已经服务于电视广播、公安、铁路、电力系统等各个方面。将光纤通信和无线电、卫星等通信手段结合,可以实现从飞机、火车、轮船等地向地球上任意方位的连线通话。
  2.1.2多媒体领域的应用
  (1)光纤通信可视机,亦即可视电话,目前已经家喻户晓。(2)借助光纤技术利用电子显示屏显示报纸,它比纸张刊登的消息和新闻更加及时丰富。(3)电视会议的召开,也得力于光纤技术的发展。多方会议人员相隔千里,却能通过电话电视等媒介,像相处一室一般。
  2.1.3网络领域的应用
  因为光导纤维良好的传输性能,其已经被广泛应用在计算机中的局域网和广域网中。宽带光纤线路通过调制解调器,把电压形式的调制信号耦合到一条信道上,实现光传导的控制,达到低损耗高效传输的目的。
  2.1.4医疗领域的应用
  因为光纤具备柔软、体积小、重量轻及灵敏度高等特点,已经广泛应用于医疗设备,如内窥镜、光纤诊断系统、光纤治疗等。
  2.2光纤通信的材质改进
  近几年,随着科学技术的快速发展,塑料光纤已经逐步问世,它以优良的性能和低廉的制造维护成本被通信行业认可。
  2.2.1塑料光纤的特点
  (1)芯径粗、耦合性好、不用熔接与焊接;(2)重量轻、柔性好、可弯曲;(3)防腐蚀、防超市、防震防爆;(4)无电磁波干扰和辐,射,保密性安全性及抗干扰能力极强;(5)衰减为恒量,不随频率上升而增加;(6)能满足特定场合的要求。
  2.2.2产品优势
  (1)可全面替代铜缆,节省大量资源;(2)连接简单,操作方便,无需接头;(3)弯曲状况下可受力,适于安装工艺网络,安装容易,维护成本低;(4)成本低,用途广泛,是相同性能铜缆价格的一半。
  2.2.3 POF在局域网系统中与其它传输介质相比
  (1)配合石英光纤,在宽带网的末端发挥效用。塑料光纤可以解决“最后几百米”
  的问题。长距离―石英光纤;短距离―塑料光纤,楼外石英光纤,楼内塑料光纤。共同实现宽带全光网。(2)POF对电磁干扰不敏感,也不发生辐射,不同数据速率下的衰减恒定,误码率可预测,能在电噪声环境中使用。(3)尺寸较长,可降低接头设计中公差控制的要求,故成网成本较低。
  
  3我国光纤光缆发展的现状
  3.1普通光纤
  普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G。652。A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG。654规定的截止波长位移单模光纤和符合G。653规定的色散位移单模光纤实现了这样的改进。
  3.2核心网光缆
  我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G。652光纤和G。655光纤。G。653光纤虽然在我国曾经采用过,但今后不会再发展。G。654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。
  3.3接入网光缆
  接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G。652普通单模光纤和G。652。C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。
  3.4室内光缆
  室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。
  3.5电力线路中的通信光缆
  光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。

  
  4光纤通信发展中的新技术探究
  
  对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。
  4.1超大容量、超长距离传输技术
  波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。
  仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。
  4.2光孤子通信
  光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。
  光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10 ̄20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。
  4.3光网络的智能化
  光网络智能化是通信技术的重要发展方向,光通信技术已有40年的发展历史,主要是以传输为主线的。但随着计算机技术的发展,加上计算机技术与通信技术的结合,网络技术得到了更高层次的进步,现代光网络中还加入了自动发现能力、连接控制技术和更完善的保护恢复功能,促使光网络的智能化发展,其中,ASON就是典型的例子。
  4.4相干光通信将普及
  在接收机中,相干光通信增加了光混频器和本真光源,具有混频增益的特性,使得系统的接收灵敏度极高,并且波长选择能力极为出色。因此,相干光通信可以在波分复用系统,特别是光频分复用系统中发挥巨大的作用。可以想象,人们将像现在调谐无线电的接收机那样,通过调节接收机本振光源波长,即可极为方便地从众多的信息通道中接收所需要的任何信息。
  4.5单波长通道向多波长通道过渡
  采用复接技术可以进一步扩大光波通信系统容量,从而实现空分、时分、频分、码分多址复用。空分复用采用多根光纤来传送信号,而单根光纤则采用频分、时分、码分复用。
  
  4.6光器件的集成化
  光电子器件的发展趋势是实现其集成化。想要实现全光通信网络,器件的集成是重点,也是核心,光子集成芯片的制造需要将将激光器、检测器、调制器和其他器件都集成到芯片中,这些集成需要在不同材料多个薄膜介质层上不停的沉积,主要材料有砷化铟镓、磷化铟等。虽然这是一种复杂的技术,但随着互联网多媒体技术的发展,传统的1M-6M的互联网接入带宽变得不足,因此,只通过增加设备来提高速度扩大带宽已经不现实了,可见,光器件的集成是必须的,也是保证光纤通信技术发展的核心内容。
  
  5结语
  光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。光纤通信技术的快速发展促进了社会的信息化,而社会的信息化又进一步加速了光纤通信技术的发展,大容量、高速率是社会信息化的两个重要特征,新型光通信技术正是为了针对性的解决这些问题而孕育产生的,这必将使得光纤通信技术取的更大的发展。
  


转载注明来源:https://www.xzbu.com/2/view-598763.htm