您好, 访客   登录/注册

无轴承无刷直流电机的运行控制

来源:用户上传      作者:

  【摘 要】无轴承无刷直流电机是一种新型的电机,它同时拥有无轴承电机和无刷直流电机的优点,无摩擦、高转数、高效率,通过控制策略来驱动转子的悬浮作用和负载功能,具有很好的应用前景。本文主要分析了无轴承无刷直流电机基本组成、工作原理,并在此基础之上提出了控制电机运行的技术策略。
  【关键词】电机;无轴承;无刷直流
  1.无轴承无刷直流电机概况
  在了解无轴承无刷直流电机的运行控制策略前需要先对其基本组成、结构和工作原理有一个整体的认知。
  1.1基本组成
  无轴承无刷直流电机是基于磁轴承电机和无刷直流电机的结合体,悬浮力绕组直接安装在定子磁轭中,悬浮力绕组和转矩绕组一起共用一个定子,从而达到转速快、无磨损和无需励磁、高效可靠的目的。其组成部分包括控制器、转子角位置传感器、径向位移传感器和电机本体等,其中控制器又包括了逆变器及其控制和驱动电路,它所起的作用是根据转子角位置及径向位移信号经数字处理器运算后驱动电机运行;转子角位置传感器的功能是测量转子的位置信号,并将信号经滤波放大后传给控制器,基于此实现电机的电子换向和电流常数的选择;径向位移传感器的主要作用是测量转子的径向位移,并经滤波放大后传回给控制器经处理后将转子拉回轴心。
  1.2本体结构
  无轴承无刷直流电机的本体构成包括了定子磁轭、定子齿、转矩绕组、悬浮力绕组、永磁体、转子铁芯和转轴。定子磁轭呈圆筒形状,在内部套有转轴,在转轴外部套有转子铁芯,在转子铁芯的表面上均匀的分布着永磁体,定子磁轭、转轴和转子铁芯三者在同一个轴子上,另有12个定子齿均匀固定在定子磁轭的内圆周面上,悬浮力绕组和转矩绕组则缠绕在定子齿上;转矩绕组由三相转矩绕组组成,采用短矩集中绕组,每相转矩绕组由四个线圈组成;悬浮力绕组由三相悬浮力绕组组成,采用短矩集中绕组,每相悬浮力绕组由两个线圈组成。
  1.3工作原理
  无轴承无刷直流电机处于工作状态的时候,转子是呈逆时针方向旋转的,三相转矩绕组通电的顺序是由转子角位置决定的,在转矩绕组通电的时候,同齿的悬浮力绕组是不通电的,承受转子的的力量主要来自于另外两个悬浮力绕组通电时产生的可控制悬浮力,由于集中绕组的互感很小,可以通过在电机绕组布置上实现转矩与悬浮力之间的解耦,有效降低控制系统复杂程度和节约控制的成本。
  2.无轴承无刷直流电机特征
  无轴承无刷直流电机兼具了无轴承电机和无刷直流电机两者优越的特征,在实际工程应用有着独特的价值,以下主要介绍了其几点特征。
  2.1效率高
  一方面,这种电机的无刷直流设计主要是采用永磁体做为转子,永磁体的特性使得它所产生的磁场是恒定的,不会发生忽大忽小的变化,基于这个特点它本身就具有很高的运行效率;另一方面,采用悬浮绕组结构提供悬浮力可以避免采用轴承时产生的机械摩擦力,可以腾出更多的轴向空间,大幅度减少能力的损耗,这些结构特点都大大地提高了电机运行的效率,并且为电动机更高的临界转速提供了可能性。
  2.2控制操作便捷
  电机在一个电磁周期内会有6个关键位置信号,检测到这些关键位置信号之后,就可以通过控制无轴承无刷直流电机转矩绕组从而实现对电机的控制。最近几年来,市场有研发出了更加专业的控制芯片,通过对这些芯片的应用可以大幅降低控制成本,操作也越来越方便简单。
  2.3机械噪声小、使用寿命长、养护方便
  无轴承无刷直流电机的结构设计中没有安装机械电刷,在使用的过程不会因为机械在转向的时候产生噪音、火花,也避免了由于换向摩擦给电机带来的磨损;无轴承的设计结构也可以避免摩擦、磨损,不需要定期更换碳刷、不需要经常润滑,维修养护起来比较简单方便,同时也延长了使用的寿命。
  3.无轴承无刷直流电机的运行控制技术策略
  无轴承无刷直流电机的控制方法概括起来讲是分别对转矩绕组和悬浮绕组进行控制,然后总过解耦的技术手段将两者组合起来。对转矩绕组和悬浮绕组的控制可以采用不同的控制方法,在实际应用中,还是以PID控制方法比较常见,具体控制策略如下。
  3.1直接转矩控制策略
  直接转矩控制方法,它是指直接在定子坐标系下对电机的链条、转矩进行观测,并将观测值记录下来跟设定值进行比较,得到一个差值后,这个差值会通过滞环比较器对电机发出控制信号,最后再根据当前的磁链状态确定对电压空间矢量的选择,从而来达到直接控制电机转矩的目的。这种技术控制策略已经有很长的应用历史,发展到现在其技术是相对比较成熟的了。但是转矩控制策略既它的优点也有它的缺点。
  (1)优点。它不需用到旋转坐标系,可以省去对矢量旋转变换进行计算的复杂环节,且电机参数不会对其产生太大的影响;对转矩进行直接的控制,控制模型的建立不会太复杂,而且可以动态响应速度比较快;对电机本体、逆变器和开关的模式进行了全面的优化,处理信号相对比较便捷。
  (2)缺点。首先,无轴承无刷直流电机的磁场是呈非正弦分布特征的,因此也带来了一些问题。该种电机的反电势呈梯形波分布,一般比较匹配的电流波形为矩形,定子和转子的磁势也是呈非正弦分布特征,电枢的反应磁场和永磁体磁场的旋转方式是不一样的,前者呈跳跃式旋转,后者呈连续旋转,因此相对来说最终合成的磁场要比正弦分布磁场复杂的多。其次,关断相带来的问题。无轴承无刷直流电机是二二导通的,无论什么时刻都会有一个关断相的存在。在关断相反电势处于梯形波的斜坡阶段,它的电压是浮动的,是一个变量,所以正是这个变量的存在,才使得在计算电压空间的时候增加了难度。就算是保持逆变器的开关状态始终处于开关状态,电压空间矢量的幅度、位置也会随时间发生变化,这也是导致对转矩进行直接控制的关键原因。
  3.2电机悬浮绕组控制策略
  通过采用电机悬浮绕组的方法可以实现对无轴承无刷直流电机进行独立控制,悬浮绕组由永磁体组成,可以提供支撑力。在转子悬浮控制系统中,转子径向位置的横向轴和纵向轴是处于相互垂直状态的,用气隙传感器探测转子径向位置和参考值,得出的差别用积分微分控制器来调节产生悬浮力参考值,根据悬浮力与转子电流之间的关系和坐标的变化可以得到电流参考值,通过2/3坐标变化得到悬浮绕组的电流参考值,通过电流调节器控制悬浮力的电流,最终实现对电机运行的控制。
  3.3数字系统控制策略
  无轴承无刷直流电机数字系统控制策略,其组成包括了硬件系统和软件系统,通过对硬件和软件的应用来共同完成对电机控制的所有工作,包括测量电机运行过程的各项信号,对这些信号进行滤波处理、整流信号产生和处理的顺序,并采用核心算法完成对信号的驱动。这里的硬件主要有电机本体、位移和速度传感器、逆变器控制电路板、DSP数字控制电路板及接口电路。软件系统主要是应用转子磁场定向控制策略,包括速度计角度计算子程序、转速环调节子程序、坐标变换子程序、A/D转换子程序、位置环调节子程序及PWM子程序。在该控制系统中,电机转速和电流的监测是实现闭环控制的决定性条件,把这两者的数值精确地采集到DSP控制器中就能实现系统整体性能的提高。
  4.结束语
  无轴承无刷直流电机在我国发展的时间比较晚,虽然这种电机在生产活动中已经得到了广泛的应用,但是关于控制技术策略方面的研究还不够深入,特别是对关键技术难点的研究。本文在分析了电机系统构成和工作原理的基础上,提出了电机运行控制的策略:转矩控制策略和悬浮绕组控制策略,希望对无轴承无刷直流电机的运行控制应用能起到指导作用。 [科]
  【参考文献】
  [1]张琛.直流无刷电动机原理及应用[J].微电机,2012(37):25.
  [2]贾磊.无轴承无刷直流电机原理与控制技术[J].机电产品开发与创新,2011(21):87.
  [3]无轴承电机磁悬浮机理及其控制方法研究[J].中小型电机,2013(12):57.
转载注明来源:https://www.xzbu.com/8/view-12687522.htm