有限群的F * -子群与可解性
来源:用户上传
作者:何家文
摘要:S着有限单群分类的完成,人们通过引入新概念,采用新方法,开拓新方向等不断探讨可解群的研究。利用子群的特性确定群的可解性是可解群的重要研究方向。该文首先介绍F -子群的概念及其性质,然后根据Sylow-子群及其极大子群、2-极大子群的子群特性,利用奇阶群可解定理和扩张理论等方法,研究了素数幂阶F -子群对有限可解群结构的影响,并得到了可解群的若干判别准则,丰富了限可解群的理论。
关键词:F -子群 p-可解群 可解群 群类
中图分类号:O152.1文献标识码:A 文章编号:1672-3791(2022)12(a)-0000-00
F -
HE Jiawen
(School of Foundational Education, Nanning University, Nanning, Guangxi Zhuang Autonomous Region, 530200, China)
With the completion of the classification of finite simple groups, people continue to explore the study of solvable groups by introducing new concepts, adopting new methods and exploring new directions. Using the properties of subgroups to determine the solvability of groups is an important research direction of solvable groups. In this paper, we first introduce the concept and properties of F -subgroups. Then,according to the properties of Sylow- subgroups and their maximal subgroups and 2-maximal subgroups, we study the influence of prime power order F - subgroups on the structure of finite solvable groups by using the solvability theorem of odd order groups and extension theory, and obtain some criteria of solvable groups, which enrich the theory of finite solvable groups.
F -Subgroups; - Solubility; Solubility; Class of groups
[1] HALLP. A Characteristic Property of Soluble Groups[J]. Journal of the London Mathematical Society, 1937, 1(3): 198-200.
[2] WANGYM. Finite Groups with Some Subgroups of Sylow Subgroups C-supplemented[J]. Journal of Algebra, 2000, 224(2): 467-478.
[3] BALLESTER-BOLINCHESA, WANGY M, GUOX Y. C-supplemented Subgroups of Finite Groups[J]. Glasgow Mathematical Journal, 2000, 42(3): 383C389.
[4] WEIH Q, WANGY M, LIYM. On C-supplemented Maximal and Minimal Subgroups of Sylow Subgroups of Finite Groups[J]. Proceedings of the American Mathematical Society, 2004, 132(8): 2197-2204.
[5] ZHONGX G,LIS R. On C-supplemented Minimal Subgroups of Finite Groups[J]. Southeast Asian Bulletin of Mathematics, 2004, 28(6): 1141-1148.
[6] ZHONGX G. Finite Groups with Some Subgroups of Prime Power Order C-supplemented[J]. Indian JournalPure Applied Mathematics, 2009, 40(4): 267-273.
nlc202211301356
[7] 李样明, 赵立博. 有限CN-群与有限C-可补群[J]. 数学年刊A辑(中文版), 2021, 42(4): 379-392.
[8] 韦华全. 子群特性与有限群结构[D]. 广州: 中山大学, 2006.
[9] WEIH Q, YANGL Y, DONGS Q. Local C-supplementation of Some Subgroups in Finite Groups[J]. Communications in Algebra, 2016, 44(11): 4986-4994.
[10] BIANCHI M, MAURIA G B, HERZOGM, et al. On Finite Solvable Groups in Which Normality is a Transitive Relation[J]. Journal of Group Theory, 2000, 3(2): 147C156.
[11] CS?RG?P, HERZOGM. On Supersolvable Groups and the Nilpotator[J]. Communications in Algebra, 2004, 32(2): 609-620.
[12] GUOXY, WEIXB. The Influence of H-subgroups on the Structure of Finite Groups[J]. Journal of Group Theory, 2010, 13(2): 267-276
[13] MOHAMEDA. On Weakly C-supplemented Subgroups of Finite Groups[J]. Journal of Algebra and Its Applications, 2017, 16(5): 1750134(1-11).
[14] AL-GAFRI TM, NAUMAN SK. On -Subgroups of Finite Groups[J]. Annali dell’Universita di Ferrara, 2018,64(2): 209-225.
[15] LIANGJQ. On Finite Groups of -Subgroups[J]. Pure Mathematics, 2020, 10(1): 30-37.
[16] 孙昌满. 局部化条件下子群的弱正规性对有限群结构的影响[D]. 南宁: 广西大学, 2022.
[17] MIAOL, GUOW B. Finite Groups with Some Primary Subgroups F-s-supplemented[J]. Communications in Algebra, 2005, 33(8): 2789-2800.
[18] MIAOL. On P-nilpotency of Finite Groups[J]. Bulletin of the Brazilian Mathematical Society, NewSeries,2007,38(4):585-594.
[19] 李长稳, 郭文彬. 关于F-s-可补子群[J]. 数W研究与评论,2007,27(1): 207-211.
[20] 赵勇 .F-s-可补的子群对有限群结构的影响[J]. 纯粹数学与应用数学,2012,28(05):614-619
[21] 钟祥贵,张洪,何家文.F * -子群与有限群的超可解性[J]. 广西师范大学学报(自然科学版),2010,28(2):34-37.
22] 何家文,钟祥贵,韦铸娥.F * -子群与有限群的p-幂零性[J].广西科学,2010,7(3):194-196.
[23] 徐明曜. 有限群导引(上册)[M]. 2版. 北京: 科学出版社,1999.
nlc202211301356
转载注明来源:https://www.xzbu.com/8/view-15442759.htm