您好, 访客   登录/注册

基于传感器信息融合的智能小车避障设计

来源:用户上传      作者: 刘怿恒欧亚军

  【摘要】本文分析了在智能小车的轨迹控制中的多传感器数据融合技术和基本原理,以及相应的数据融合结构,并结合智能小车的避障问题,利用模糊神经网络原理研究了一种用于小车避障运行的轨迹控制方法。最后以实例给出了智能小车避障设计的算例。
  【关键词】传感器;数据融合;智能小车;避障
  
  1.概述
  智能小车实际上是一类轮式移动机器人,其运行原理是依据单片机程序来自动实现行使、转向、加速等运动形式。因此对智能小车运动方式的控制属于机器人学的范畴。对智能小车运动轨迹的控制主要依赖于传感器的信息采集技术和智能控制技术。而在智能小车的运动轨迹控制问题中的一个重要问题是如何实现其自动避障。要完成这一任务,需要解决两个方面的问题,一是利用传感器准确的收集小车所在的环境信息,二是将环境信息自动处理后变成控制信息。实践表明,采用的单一的传感器技术已经不能满足收集充足环境信息的需要,而需要多种类型的传感器相配合,从而获得准确的环境信息。对这些通过多种类型传感器获得的环境信息的处理需要实现不同数据的之间的整合,即需要利用多传感器的数据融合技术。常用的数据融合技术如传统的卡尔曼滤波法、D-S证据推理等,但其核心思想是一致的,即通过对多种信息的融合来实现对目标的识别和跟踪。采用基于多传感器的数据融合技术已经成为智能小车避障控制中的重要研究方向。在本文中将以多传感器的数据融合技术为基础,研究智能小车的避障问题。
  2.基于多传感器的数据融合
  基于多传感器的数据融合技术需要处理来自多个传感器的实时数据,并进行快速的处理。从传感器获得数据的类型来看,这些数据代表不同的物理含义,如速度、距离、角度等,数据类型和特征也不尽相同,分属于不同的层次,因此对来自多个传感器的数据融合实际上要完成对多层次数据的综合评定,这必须依赖于一定的数据融合结构。
  2.1 基于多传感器信息的融合结构
  从现有的研究成果来看,基于多传感器信息的数据融合结构主要有四种形式:无反馈分布式融合、反馈分布式融合、集中式融合和反馈并行融合,各类融合结构的主要特点分别为:①无反馈分布式融合。无反馈分布式融合模式需要对每个传感器的数据都进行滤波分析,并完成对各传感器的局部信息融合,最后再实现对多个传感器数据的融合。这类数据融合方式的优点是不需要太大的通信开销,融合速度较快,所需的存储空间也较小。②反馈分布式融合。反馈分布式融合的基本原理和无反馈分布式融合类似,但每个传感器多了一个信息反馈通道,可提高预测和状态估计的精度,但需要更大的通信开销。③集中式融合。集中式融合的主要特点是对所有传感器采集的信息进行状态的估计和预测,通过对每个传感器采集信息的检测判定来实现对所有传感器信息的综合判定。由于采用了所有传感器的全部信息,因此这类融合方法的精度较高,但也需要更高的硬件配置。④反馈并行融合。这类数据融合结构综合了以上三类融合结构的优点,对局部、整体的数据处理效率和精度都很高,但对硬件和数据关联技术等要求也较高,是一类重要的研究方向。
  2.2 基于多传感器信息的数据融合方法
  基于多传感器信息的数据融合方法主要分为两类,一是基于概率统计的方法,如统计决策法、贝叶斯法等,二是人工智能方法,如模糊控制法、人工神经网络、D-S证据推理等。每种方法可参考有关文献,此处不再一一详述。
  3.模糊神经网络基本原理
  模糊神经网络是模糊控制理论和人工神经网络理论的耦合技术,能够有效的处理对经验性依赖较高的问题,并能广泛的适用于无法精确建模的系统。而人工神经网络则能够具备自学习能力和快速求解能力。通过模糊控制和人工神经网络的结合,能够形成函数估计器,有效的处理模糊信息和完成模糊推理,其性能比单一采用模糊控制或人工神经网络控制效果更优。模糊神经网络的基本原理为:①定义若干各模糊集合,并形成对应的控制规则。定义神经网络的层次(一般分为三层)和节点数量。②定义输入层。将输入层中的节点与输入向量分量之间实现连接。③定义隶属函数层。以语言变量值构成隶属函数层的节点,与输入层的连接权值固定为1,节点阈值为0。④定义规则层。每一条模糊控制规则定义为一个节点,节点的输出为隶属函数的输出。
  4.实例应用
  4.1 硬件
  在本例中,智能小车所采用硬件平台为STC89C52型单片机,动力系统为AUSRO马达130,驱动芯片型号为TA7267,驱动芯片与单片机相连,其输出端和马达直流电机连接,从而实现对小车的方向控制,小车通过两轮驱动。
  小车采用的传感器有两种类型:超声波测距系统和红外传感器系统。超声波测距系统的型号为TCT40-10T/R,红外传感器的型号为索尼CX20106。
  4.2 传感器数据融合规则
  在采用了5路超声波测距系统后,基本上可以对小车周围的障碍状况有比较可靠的了解,红外传感器的作用是为了弥补超声波测距系统的盲区。对这两类传感器所采集数据的处理方式为:①超声波测距系统和红外传感器同时工作;②若红外传感器的有效探测距离内发现障碍,以红外传感器的数据为准;③其他情况以超声波测距系统的探测值为准。
  对5个方向的超声波测距的数据所采用的数据融合流程为:开始→选择通道→发射超声波→盲区延时→接收信号→计算小车与障碍之间的距离→数据融合→选择小车动作。数据的融合技术采用模糊神经网络法。
  4.3 模糊神经网络的构建
  结合智能小车避障控制的需要,在小车车身配置5个超声波系统和一个红外系统,分别完成对前、左、左前、右、右前5个方向的测量,因此模糊神经网络共需要建立起5个输入和2个输出的网络结构。各个输入量的物理含义为小车在上述5个方向的与障碍的距离,神经网络的输出量为小车的前进和停止。以红外传感器采集的数据作为小车运动控制的开关量。隶属函数层的函数形式采用高斯型,模糊语言变量分别为{“远”、“近”},因此结合第一层的5个输入,共构成10个神经元。结合输入层和隶属函数层的情况,输出层的神经元数量为2的5次方,共32个神经元。
  4.4 模糊控制规则和样本训练
  (1)模糊控制规则
  模糊控制规则体现的是人为控制经验的总结,分别对5个方向的超声波探测到的距离信息为基础来控制小车的转向。其基本原则为,若距离障碍较近,则小车停止前进,若距离障碍较远,则小车继续前进。分别以F表示前进、TF表示左转、TR表示右转、在实际控制规则中,共有9条,这里仅举一条来进行说明:若前方障碍较近,且左、左前、右、右前距离障碍较远,则小车左转。将上述规则转换为模糊语言后,即可获得具体的控制规则。具体转换方式可参照有关文献。
  (2)模糊神经网络的训练样本
  依据上述模糊神经网络的基本组成方式,其模糊输入范围的论域为[0,5],以高斯型隶属度函数来划分距离远近的模糊集合。训练样本的数据量较大,因此这里不便一一列出,神经网络的训练方法可参照有关文献。
  4.5 运行效果
  在上述的步骤完成后,对小车的避障能力进行了实际验证。实验表明,利用超声波测距系统结合红外传感器后,以模糊神经网络融合上述两类传感器采集的数据可有效的实现智能小车的避障运动。
  
  参考文献
  [1]杨鹃.多信息融合技术在移动机器人避障系统中的应用[D].哈尔滨:哈尔滨理工学,2007.
  [2]陆越.模糊神经网络在列车运行调整中应用的研究[D].铁道科学研究院,2007.

转载注明来源:https://www.xzbu.com/8/view-3791939.htm