DSP系统实现多路测量信号的扩频传输
来源:用户上传
作者:
摘要:文章对多路测量信号的扩频传输系统进行了研究,提出了对所传输信号的频谱进行扩展并利用码分复用实现多路信号的复用传输的方法,分析了多路测量信号扩频传输系统的DSP系统实现的整体方案。
关键词:DSP系统;多路测量信号;扩频传输
中图分类号:TN914.42文献标识码:A 文章编号:1000-8136(2011)36-0068-02
1引言
在测控领域,通常要求对多路检测信号进行传输。信号的传输过程中常受到周围复杂环境的干扰会产生较大的失真。如采用扩频通信传输系统,在发射机中用伪随机序列对所传输信号的频谱进行扩展并利用码分复用实现多路信号的复用;在接收机中再对其解扩,恢复原传输信号。利用扩频通信的扩频增益,可大大提高通信系统的信噪比,增加传输信号的可靠性改善通信质量、提高通信效率。同时DSP具有可满足算法控制复杂结构、运算速度高、寻址方式灵活和通信性能强大等需求,可以通过软件修改传输信号参数,因此具有很大的灵活性。本文利用DSP系统实现多路测量信号扩频传输,结合了扩频通信和DSP的优点,是一种有发展前途的检测信号传输实现方式。
2多路检测信号的扩频传输系统
系统的组成按照功能划分为发射模块和接收模块。在发射模块中,多路基带数字信号(模拟信号则先通过模数转换)分别由各自对应的伪随机序列进行扩频调制,这些伪随机序列各不相同但相互正交(或准正交),用这些序列进行扩频调制同时利用码分复用技术把多路信号复合成一路信号送主调制器进行载波调制后,再发射出去。在接收模块中,先对接收到的信号进行载波解调,然后再用本地的与每一路已同步好的伪随机序列进行相关解扩,因为各路信号对应的伪随机序列互不相关,因而可恢复出每一路原始的基带信号,这里的信号是指数字信号,若需要模拟信号,则可把数字信号转换成模拟信号。本系统对接收模块的伪随机序列的同步采用常用的滑动相关捕获来实现。扩频传输系统中,扩频信号带宽B2与信息带宽B1之比称
为处理增益GP,即Gp= 。
在扩频通信中,接收机作扩频解调后,只提取扩频序列相关处理后的带宽B1的信号成分,而排除掉扩展到宽频带B2中的外部干扰、噪声和其他用户通信的影响,所以扩频处理增益GP能够准确反映扩频通信的抗干扰能力。
扩频序列的码长N越大,码元宽度TC越小,则码速Rc越大,扩频通信系统的扩频增益也越大。
扩频处理增益越高,系统的抗干扰能力越强。以周期为127的Gold序列为扩频序列的一路信号的传输过程为例,数据的发送频率为19 200,扩频序列的频率为19 200×127,误码率是未扩频传输的0.04 417,数据接收时的误码率降低近两个数量级。
本系统采用的Gold扩频序列的周期为127,其码分多址的可以实现12路的检测信号的同时同频的扩频传输。多路检测信号的扩频传输可以保证在接收端的低误码率要求下实现可靠传输。
3DSP实现的系统结构
多路测量信号扩频传输系统。主要实现多路测量信号(包括模拟信号和数字信号,模拟信号可先经A/D转换成数字信号,数字信号存储在系统的存储器中,然后再进行扩频传输)的扩频调制、同步、扩频解调等功能,同时便于以后对其扩展以完成其他功能。由于这是一个DSP硬件平台的设计,所以保证了以后功能扩展的实现中尽量不改变硬件的设计或对硬件设计改变很小,且只需要添加部分软件或对软件进行修改就可以达到其功能扩展升级,所以尽量减少专用芯片的使用而采用具有扩展性的芯片。
在总体设计中,采用定点DSP实现多路测量信号的扩频调制、解扩,用FPGA来实现扩频信号的同步。整个系统平台包括数字信号处理器(DSP)内核、FPGA、存储器、A/D转换、JTAG接口等。根据现有的实际情况,数字信号处理器(DSP)采用TI(德州仪器)公司的TMS320C5416,FPGA芯片选用ALTERA公司的EP1K100QC208-3,FLSAH存储器使用AMD公司的AM29LV200,A/D转换使用TI公司的开关电容结构的逐次比较型8位A/D转换器TLC540。JTAG为仿真接口连接。
4DSP的主要工作
DSP系统软件设计作为整个系统的控制和处理核心,DSP要完成大量的工作,总结起来主要有下面几项:①对其自身的初始化;②载入扩频码序列并存放于片内RAM里,以及接收时根据FPGA的同步信号完成扩频序列的同步;③接收A/D转换送来的数据,并存放在预先开辟的数据区间;④对接收到的多路数据分别进行扩频调制,并将调制后的数据也存放在开辟好的数据存储区间:一是对经过扩频调制后的多路数据合成一路数据并进行数字调制;二是对接收到的扩频信号进行扩频解调,恢复原始的多路信号并送入数据存储区间。
本系统所有的DSP软件设计都是在CCS2.0集成开发环境下进行的,采用基于TI公司C5000系列DSP的汇编语言和C语言混合编写的。
本系统采用对每路测量信号分别做扩频调制的同时利用扩频码码分复用后再进行传输的方法,不需经过频分复用或时分复用后再做扩频调制进行传输,这使得系统更简化,在提高信号传输可靠性的同时也可提高系统的频带利用率。电路设计中主要涉及了扩频信号的基带处理。如果要实现信号的无线扩频传输,则可以在设计的基础上,加入射频调制模块,基带信号经过调制后转换为射频信号发射出去,接收到的射频信号经射频解调后,再进行解扩处理即可。
5结束语
在多路测量信号的扩频传输系统中,利用不同伪随机码调制不同信号,实现信号的复用和扩频传输。在接收端实现系统同步后,先解调再利用相关检测法解扩,恢复出原信号实现多路信号。该扩频通信系统可实现多路信号的有效传输,具有抗干扰能力强、易保密等优点。本系统利用DSP系统实现多路测量信号扩频传输,充分利用了DSP器件的优点和扩频通信系统的特性,是一种有发展前途的检测信号传输实现方式。
创新点:本文在对多路测量信号的传输系统研究的基础上,提出了对所传输信号的频谱进行扩展的同时利用码分复用实现多路信号复用传输的方法,并利用DSP实现了多路测量信号扩频传输系统,实验结果说明该系统是可行的。
DSP System Realizing Spectrum Spread Transmission
of Multi-channel Measurement Signal
Sun Liqun
Abstract: The article does research on the spectrum spread transmission system of multi-channel measurement signal, presents the methods of extending frequency spectrum for transmitted signal and using code division multiplexing to realize multi-channel signal’s multiplexing transmission, analyzes the overall program of spectrum spread transmission system for multi-channel measurement signal to achieve DSP system and implement the circuit design.
Key words: DSP system; multi-channel measurement signal; spectrum spread transmission
转载注明来源:https://www.xzbu.com/8/view-49271.htm