您好, 访客   登录/注册

PMSM双闭环平滑非奇异终端滑模控制

来源:用户上传      作者:

  摘 要:针对传统滑模控制中高频切换控制特性不适用于永磁同步电机的双闭环矢量控制的问题,针对PMSM转速控制系统,提出一种基于鲁棒微分估计器的新型平滑非奇异终端SMC方法,理论上可完全克服抖振现象对PMSM的性能影响,提高系统的动静态特性。同时考虑到PMSM控制系统的非线性饱和特性造成的Windup现象,借鉴Antireset Windup PI控制,将转速SNTSM控制器的输入与输出电流之差作为反馈信号,克服Windup现象诱发的超调量、动静态性能变差等影响。基于李雅普诺夫稳定性理论,证明控制器的稳定性。通过仿真和实验验证所提控制方法的可行性和有效性,实现将SMC应用于PMSM的双闭环控制系统中,解决了交轴最大电流限幅造成的Windup问题,响应速度、无超调量、鲁棒性等性能得到优化。
  关键词:滑模控制;永磁同步电机;非奇异终端滑模控制;抖振;windup
  DOI:10.15938/j.emc.2020.03.017
  中图分类号:TM 351文献标志码:A文章编号:1007-449X(2020)03-0138-09
  Abstract:The traditional sliding mode control (SMC) is not suitable for the double closedloop vector control of permanent magnet synchronous motors (PMSM), due to its highfrequency switching control characteristics. For the speed control system of PMSM, a smooth double closedloop nonsingular terminal sliding mode (SNTSM) control scheme based on a robust differential estimator is proposed. It could realize the freechattering SMC, overcome the influences of chattering problem on PMSM and improve the robustness and the response speed of the system. Focused on the windup phenomenon caused by nonlinear saturation characteristics of PMSM system, the difference between the input current and output current of speed SNTSM controller was taken as a feedback signal, as Antireset Windup PI controller does, to overcome the influence such as overshoot, bad dynamic and static performances. Based on the Lyapunov theorem, the stability of controllers was proved. Simulation and experiment results proved the proposed method.
  Keywords:sliding mode control; permanent magnet synchronous motor; nonsingular terminal sliding mode; chattering; windup
  0 引 言
  永磁同步电机(permanent magnet synchronous motors,PMSM)以其效率高、运行可靠、力能指标好、质量轻、体积小等优点,目前在汽车船舶、风机水泵、医疗器械等领域应用前景广阔[1-2]。然而,PMSM的转速、电流、电压等输入/输出量之间存在复杂的影响关系,尽管利用矢量控制技术可实现PMSM的模型解耦,但是耦合作用不等于简单的干擾,PMSM的内部参数摄动和负载等外部扰动,仍对系统的稳定性及各项动静态性能指标产生严重影响。如何实现强鲁棒性、高性能的PMSM控制策略研究仍具有重要的研究价值[3-5]。
  大量文献表明滑模控制(sliding mode control,SMC)以其实现简单、抗干扰能力强等优点而成为一种有效控制非线性系统的手段[6-7]。目前,SMC在PMSM中的应用仍以传统SMC为主,其中应用最为广泛的方法包括线性滑模[6]、终端滑模[8]和非奇异终端滑模(nonsingular terminal sliding mode,NTSM)[9],例如文献[10-11]。一方面,抖振问题[6]严重制约其实际应用。考虑到实际系统硬件电路的实现,理论上无限快的SMC切换控制sgn(.)只能通过有限频率的功率器件实现,进而诱发高频抖振现象,使得实际PMSM控制器输出表现为光滑的理论计算值与有限频率和幅值的锯齿信号的叠加,从而降低系统的动静态性能,造成电机磨损和发热,甚至破坏其稳定性。另一方面,尽管采用诸如滞环调制、积分器/低通滤波等多种措施可以有效抑制高频抖振信号,然而传统的SMC在PMSM的应用多采用诸如“外环PI+内环SMC”的复合形式,难以扩展到双闭环SMC控制。从理论上分析,外环SMC控制器的输出sgn(.)作为输入送到内环,即意味着内环SMC控制器设计时需要对高频切换信号sgn(.)求导,这显然是个难题。
  同时,Windup现象也是影响PMSM系统控制性能的一个突出问题。PMSM控制系统包含复杂的非线性饱和特性,例如逆变器的限幅作用等,使得控制器参考输入值和反馈值不相等,进而出现 Windup现象,造成超调量过大,甚至系统失稳的现象。相比于PI控制的AntiWindup方法[12],例如条件作用技术和系统综合法,目前在PMSM滑模控制系统的研究还略显薄弱,但Windup问题依然存在,有必要在SMC控制器设计时进行考虑。   本文以NTSM方法为例,研究抖振和Windup两个问题在PMSM双闭环SMC控制系统中的解决。利用王艳敏等人基于高阶滑模[13-14]的去抖振原理所提出的一种新型平滑非奇异终端滑模(smooth nonsingular terminal sliding Mode, SNTSM)控制方法[15],将其扩展应用到PMSM的双闭环控制结构中,引入鲁棒微分估计器技术[16]实时获得系统状态微分,增加虚拟控制项以提高系统的相对阶,使得SMC的切换控制sgn(.)经过算法积分而处处连续,理论上可实现无抖振NTSM控制,提高PMSM系统的控制性能。借鉴Antireset Windup PI方法对Windup现象的抑制机理,将转速环SNTSM控制器的输入与输出电流之差作为反馈信号构成反馈支路,使得系统自动退出饱和区。给出转速环和电流环各控制器的设计和稳定性分析。最后,通过Simulink仿真和DSP实验平台验证所提控制策略的有效性。
  特别地,本文所提SNTSM方法对抖振和Windup两个问题的解决机理具有普遍性,可拓展到线性滑模和终端滑模等其他传统SMC方法及在PMSM系统中的应用。
  1 PMSM平滑非奇异终端滑模控制
  以上研究价值体现在复杂SNTSM双闭环SMC在DSP的实验化,相对于目前普遍应用的“外环PI+内环SMC”的复合形式,实现了SMC在转速控制系统内、外环的拓展应用;然而,尽管借助于鲁棒微分估计解决了微分信号的求取,相比于目前查表法的DSP算法实现更便捷和数据真实,但由图7(a)~图7(f)应注意到:SNTSM转速控制器会在不同给定转速启动过程均出现较大的反向转速,之后再快速跟踪上给定值,其原因归咎于零初始速度启动时,式(3)和式(21)转速环SNTSM包含的幂次微分e·p1/q1ω和e·2-p1/q1ω值较大;而对于交轴和直轴电流SNTSM控制器,却没有这种问题出现。
  4 结 论
  本文针对PMSM轉速控制系统,提出一种基于鲁棒微分估计器和AntiWindup方法的双闭环SNTSM矢量控制方案,拓展SMC方法在PMSM双闭环控制结构中的实现,且利用算法本身包含的切换控制提供的鲁棒性直接解决交轴最大电流限幅造成的Windup问题,在鲁棒性、响应时间、无超调等方面具有明显的性能改善。
  本文所提SNTSM方法对抖振和Windup两个问题的改进思路,可扩展到目前常用的线性滑模和终端滑模及PMSM系统,特别地,目前对高级SMC方法在PMSM系统中的实验多通过诸如DSpace等半物理仿真设备进行,而真正的工程实现则最终还是需要通过嵌入式芯片。因此,本文基于DSP的SNTSM双闭环PMSM控制系统实现对SMC的实用化研究方法将具有重要的借鉴价值。特别地,实验结果也证明本文所提算法稳态性能可达到实际PMSM性能要求,但启动过程反向转速问题归根于算法非线性项使然,这为未来深入研究指明方向。
  
  参 考 文 献:
  [1] MORIMOTO S. Trend of permanent magnet synchronous machines[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2007,2(2):101.
  [2] HONDA Y,TAKEDA Y.Technical evolution ofpermanent magnet synchronous machines for home appliances[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2007,2(2):118.
  [3] ZHANG X, LI Z. Sldingmode observerbased mechanical parameter estimation for permanent magnet synchronous motor[J]. IEEE Transactions on Power Electronics, 2016,31(8):5732.
  [4] ZHANG C, HE J, JIA L, et al. Virtual lineshafting control for permanent magnet synchronous motor systems using slidingmode observer[J]. IET Control Theory&Applications,2015,9(3):456.
  [5] CHEEMA M A M, FLETCHER J E, FARSHADNIA M, et al. Combined speed and direct thrust force control of linear permanentmagnet synchronous motor with sensorless speed estimation using a slidingmode control with integral action[J]. IEEE Transactions on Industrial Electronics, 2017,64(5):3489.
  [6] VADIM I U. Sliding mode control in electromechanical system [M]. CRC Press, 2009:17-40.
  [7] BARTOLINI G, PISANO A, PUNTA E, et al. A survey of applications of secondorder sliding mode control to mechanical systems [J]. Internal Journal of Control,2003, 76(9):875.   [8] MAN Z, YU X. Terminal sliding mode control of MIMO linear systems[C]//IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications.1997, 44(11):1065-1070.
  [9] 冯勇,鲍晟,余星火. 非奇异终端滑模控制系统的设计方法[J].控制与决策,2002,17(2):194.
  FENG Yong, BAO Sheng, YU Xinghuo. Design method of nonsingular terminal sliding mode control systems [J]. Control and Decision, 2002,17(2):194.
  [10] FENG Y, ZHENG J, YU X, et al. Hybrid terminal slidingmode observer design method for a permanentmagnet synchronous motor control system. [J]. IEEE Transactions on Industrial Electronics, 2009,56(9):3424.
  [11] LEI Q, ZHANG W. Adaptive nonsingular integral terminal slidingmode tracking control for autonomous underwater vehicles [J]. IET Control Theory & Applications. 2017,11(8):1293.
  [12] PARK J K. Control of stateconstrained linear dynamical system: antireset windup approach[J]. IEE Poceedings Control Theory and Applications. 2000,147(2):159.
  [13] LEVANT A. Chattering analysis [J]. IEEE Transactions on Automatic Control. 2010,55(6):1380.
  [14] BARTOLINI G, FERRARA A, USAI E. Chattering avoidance by secondorder sliding mode control[J]. IEEE Transactions on Automatic Control. 1998,43(2):241.
  [15] 王艷敏,冯勇,夏红伟,等. 多输入不确定系统的平滑非奇异终端滑模控制[J].控制与决策,2015,31(1):161.
  WANG Yanmin, FENG Yong, XIA Hongwei, et al. Smoothnonsingular terminal sliding mode control of uncertain multiinput systems[J]. Control and Decision,2015,31(1):161.
  [16] LEVANT A, LIVNE M. Exact differentiation of signals with unbounded higher derivatives[J]. IEEE Transactions on Automatic Control,2012,57(4):1076.
  [17] IMURA A, TAKAHASHI T, FUJITSUNA M, et al. Improved PMSM model considering flux characteristics for model predictivebased current control[J]. IEEJ Transactions on Electrical and Electronic Engineering,2015, 10(1):92.
  [18] LEVANT A, FRIDMAN L M.Accuracy of homogeneous sliding mode in the presence of fast actuators[J].IEEE Transactions on Automatic Control,2010,55(3):810.
  [19] 张兴华,聂晶,王德明. 感应电机直接转矩控制系统的变结构 antiwindup 控制器[J].电机与控制学报,2013,17(01):77.
  ZHANG Xinghua,NIE Jing,WANG Deming. Variablestructure antiwindup controller for direct torque controlled induction motor drives[J]. Electric Machines and Control,2013,17(01):77.
  [20] WATANABE K, OYAMORI K, SATO N. Effect of magnetic saturation on the operating characteristics of series commutatorless motor[J]. Electrical Engineering in Japan,2008,96(4):60.
  [21] 于艳君,柴凤,高宏伟等.基于Antiwindup控制器的永磁同步电机控制系统设计[J].电工技术学报,2009,24(4):66.
  YU Yanjun, CHAI Feng, GAO Hongwei, et al. Design of PMSM system based on antiwindup controller[J]. Transactions on China Electrotechnical Society,2009,24(4):66.
  (编辑:贾志超)
转载注明来源:https://www.xzbu.com/1/view-15174308.htm