改进的粒子群优化算法对断路器储能弹簧的优化设计
来源:用户上传
作者:
摘 要:针对断路器储能弹簧传统经验试算的设计方法易导致弹簧结构参数不合理、断路器的体积大及分断性能差的问题,应用一种结合鲶鱼效应改进的云粒子群优化算法对断路器的储能弹簧参数进行优化设计。首先,根据储能弹簧的工作原理,推导储能弹簧的数学优化设计模型以及弹簧参数设计的约束条件;然后,根据优化模型对算法进行改进,在传统粒子群优化算法的基础上,引入鲶鱼效应策略产生多样候选解,避免算法陷入局部最优值,并结合云模型适时调整寻优速度权重因子,以加快算法的收敛和提高全局搜索能力;最后,采用改进算法对断路器的储能弹簧优化模型进行仿真及相应的弹簧参数计算。实验结果表明,可以应用改进的粒子群优化算法对断路器储能弹簧进行优化设计,设计结果更加小型化、分断性能更优。
关键词:储能弹簧;粒子群优化算法;云模型;鲶鱼效应
中图分类号:TP213
文献标志码:A
Abstract: In the traditional way to design the energy storage spring of the circuit breaker the method of experience trial calculation is mainly adopted, which may easily lead to unreasonable parameters of the spring structure, large volume of circuit breaker and poor breaking performance. Therefore, An improved cloud particle swarm optimization algorithm combined with catfish effect was applied to optimize the parameters of energy storage spring of circuit breaker. Firstly, according to the working principle of energy storage springs, the mathematical optimization design model of the energy storage springs and the constraints of the spring parameter design were deduced. Then, improving the algorithm based on the optimization model, on the basis of the traditional particle swarm optimization algorithm, catfish effect strategy was introduced to produce various candidate solutions, avoiding the algorithm falling into local optimal value and the optimization speed weighting factor was adjusted combined with the cloud model to speed up the convergence of the algorithm and improve the ability of global search solutions. Finally, the improved algorithm was used to simulate the optimization model of the energy storage spring of circuit breakers and calculate the corresponding spring parameters. The results show that the improved particle swarm optimization algorithm can achieve miniaturization and better breaking performance of circuit breakers.
0 引言
在新能源领域与智能电网的快速发展大趋势下,供配电市场规模不断扩大,电网的可靠性运行要求也越来越高[1]。断路器作为常见的开关器件,用于接通和分断电流,以保护电气设施、配电线路免于由短路引起的过电流受损及过欠压破坏[2]。随着日常用电量增多,为确保电网能够安全工作,对断路器的优化要求日异严苛[3]。其中,断路器优化主要体现在节能化、快速分断、小型化、可通信等方面[4-5], 因此,设计高效、稳定、安全的断路器是目前研究的热点、难点[6-8]。
在断路器小型化、快速分断方面的优化,储能弹簧是断路器的首要优化对象[9]。储能弹簧设计时,弹簧力不宜过大从而可以减少机械磨损、减小设计体积;弹簧力也不宜过小从而触头可以快速闭合、分断电流; 此外,储能弹簧的设计还存在诸多复杂约束,主要包括:剪切强度约束、疲劳强度约束、弹簧刚度约束、细长比约束、共振约束以及弹簧旋绕比约束等[10]。而传统的断路器储能弹簧设计方法通常采用经验估算、反复试算、生产大量样机测试实验等方式,使得断路器自身体积设计过大、设计粗糙导致断路器分断性能差、寿命短。因此,须结合当今先进的仿真优化技术,并提出科学、可靠的断路器优化设计方案。
粒子群优化(Particle Swarm Optimization, PSO)算法常用来解决具有非线性、多条件、不可微和多极值等特征的工程优化问题[11]; 同时,由于PSO算法操作便捷、适用性强,该算法得以在工程设计、生命科学演化、电网优化、集成测试等方面大量应用[12-16]。然而,对于不同实际问题的应用,PSO算法的性能都需依情况进行调整。传统的PSO算法在迭代之初,速度惯性系数较大,有利于全局寻优,此时如果粒子群已经在最优值范围附近搜索,但多数粒子对最优值不敏感,会产生盲目寻优、算法性能下降等問题;在迭代后期,寻优惯性系数减小有利于局部寻优,但多数粒子又可能陷入局部最优、粒子多样性差,从而得不到最优解[17]。针对PSO算法还存在的收敛慢、易陷入局部最优问题,算法应进行必要的改进才能适应各种复杂多约束的优化问题,如陈大鹏等[18]在传统PSO算法中采用惯性权重因子呈指数下降的策略,并引入人工免疫思想,形成免疫PSO算法,来增加粒子多样性,避免粒子陷入局部最优;范成礼等[19]针对传统PSO算法在求解高维空间的复杂问题时易陷入局部最优的问题,提出了一种带反向预测和斥力因子的改进PSO算法。而对于PSO算法的早熟问题,黄松等[20]则提出了一种自适应变异概率PSO算法,研究通过考察粒子聚集度动态调节每代粒子的变异概率,并对全局寻优进行高斯和柯西缓和变异、对最差个体最优位置进行小波变异,最后证明了改进算法具有较高的收敛精度。此外,李国栋等[21]还提出一种用于定性与定量信息转换的云模型,其中,正态云模型可将定性的概念通过定量表示,并可以和PSO算法结合。 綜上,本文将针对万能式断路器储能弹簧设计中,弹簧结构参数设计粗糙、试算方法复杂低效等问题,提出应用结合鲶鱼效应改进的云粒子群优化算法,对万能式断路器的储能弹簧进行优化仿真设计。即先推导储能弹簧优化目标函数数学模型与弹簧约束条件,再根据优化的数学模型及约束条件对粒子群优化算法加以改进,最后采用改进的算法优化设计储能弹簧,并计算出相应的弹簧设计参数。
4 结语
通过采用改进粒子群优化算法优化设计的断路器储能弹簧结构参数,可得到如下结论:
首先,根据断路器的储能弹簧设计要求,在满足弹簧相应的工作强度下,采用试算的方式设计可以得到一组弹簧参数,但试算方式所得结果相对粗糙,设计的弹簧体积较大。
而对断路器储能弹簧可进行优化建模,并推导约束条件不等式;再采用PSO算法,根据断路器相应的设计要求,对算法的求解速度与精度两方面进行深度改进。其中,引入云模型以加快求解速度,引入鲶鱼效应策略增加了候选解的多样性,使得算法求解精度更高。
最后,应用改进后的PSO算法设计得到的断路器储能弹簧质量、体积及其他相关参数,可以在给定参数设计范围内快速求解,与试算方式求得结果进行比较,得到储能弹簧更小的设计参数、质量和体积,从而减小储能弹簧的设计体积与实现断路器的快速分断,并提高了设计效率。
此外,CECPSO算法不仅可用于储能弹簧的优化设计,还可以用于断路器其他零部件及结构的优化设计,以取代传统的试算设计方法。
参考文献 (References)
[1] GHOLIAN A, MOHSENIANRAD H, HUA Y B. Optimal industrial load control in smart grid[J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2305-2316.
[2] LIU F, LIU W J, ZHA X M. Solidstate circuit breaker snubber design for transient overvoltage suppression at bus fault interruption in lowvoltage DC microgrid [J]. IEEE Transactions on Power Electronics, 2017, 32(4): 3007-3021.
[3] MAQSOOD A, OVERSTREET A, CORZINE K. Modified zsource DC circuit breaker topologies[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7394-7403.
[4] 朱童,余占清,曾嵘,等.混合式直流断路器模型及其操作暂态特性研究[J].中国电机工程学报,2016,36(1):18-30.(ZHU T, YU Z Q, ZENG R, et al. Transient model and operation characteristics researches of hybrid DC circuit breaker [J]. Proceedings of the CSEE, 2016, 36(1): 18-30.)
[5] PEI X Z, CWIKOWSKI O, SMITH A C. Design and experimental tests of a superconducting hybrid DC circuit breaker [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5.
[6] 田园,胡炎.计及保护和断路器动作不确定性的隐性故障检测模型[J].电网技术,2016,40(9):2896-2903.(TIAN Y, HU Y. Analytic model of hidden failure detection model considering uncertainty of protection and circuit breaker tripping [J]. Power System Technology, 2016, 40(9): 2896-2903.)
[7] MAJI T K, ACHARJEE P. Multiple solutions of optimal pmu placement using exponential binary PSO algorithm for smart grid applications [J]. IEEE Transactions on Industry Applications, 2017, 53(3): 2550-2559.
[8] LIU C L, WEI D, ZHANG B. On novel methods for characterizing the arc/contact movement and its relation with the current/voltage in lowvoltage circuit breaker [J]. IEEE Transactions on Plasma Science, 2017, 45(5): 882-888. [9] 李鹏飞,周文俊,曾国,等.高压断路器合闸弹簧动态特性及储能状态检测方法[J].电工技术学报,2016,31(3):104-112.(LI P F, ZHOU W J, ZENG G, et al. The dynamic characteristics and energy storage state detection method of highvoltage circuit breaker closing spring [J]. Transactions of China Electrotechnical Society, 2016, 31(3): 104-112.)
[10] 赵思洋,汪安本,周文俊,等.基于模糊综合评判的断路器操动机构弹簧储能状态评估[J].高压电器,2016,52(6):187-192.(ZHAO S Y, WANG A B, ZHOU W J, et al. State assessment of circuit breaker actuators spring based on fuzzy comprehensive evaluation [J]. High Voltage Apparatus, 2016, 52(6): 187-192.)
[11] BONYADI M R, MICHALEWICZ Z. Stability analysis of the particle swarm optimization without stagnation assumption [J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 814-819.
[12] BANERJEE S, GHOSH A, RANA N. An improved interleaved boost converter with PSO based optimal typeIII controller [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 323-337.
[13] 王皓,欧阳海滨,高立群.一种改进的全局粒子群优化算法[J].控制与决策,2016,31(7):1161-1168.(WANG H, OUYANG H B, GAO L Q. An improved global particle swarm optimization algorithm [J]. Control and Decision, 2016, 31(7): 1161-1168.)
[14] JIANG S Y, YANG S X. An improved multiobjective optimization evolutionary algorithm based on decomposition for complex pareto fronts [J]. IEEE Transactions on Cybernetics, 2016, 46(2): 421-437.
[15] 张栋华,李征,蔡旭.基于量子行为粒子群优化算法的为电网优化配置[J].计算机仿真,2014,31(8):120-124,208.(ZHANG D H, LI Z, CAI X. Microgrid optimization allocation problem based on quantumbehaved particle swarm optimization [J]. Computer Simulation, 2014, 31(8): 120-124, 208.)
[16] 周海鹏,高芹,蒋丰千,等.自适应混沌量子粒子群算法及其在WSN覆蓋优化中的应用[J].计算机应用,2018,38(4):1064-1071.(ZHOU H P, GAO Q, JIANG F Q, et al. Application of selfadaptive chaotic quantum particle swarm algorithm in coverage optimization of wireless sensor network [J]. Journal of Computer Applications, 2018, 38(4): 1064-1071.)
[17] FONG S M, WONG R, VASILAKOS A V. Accelerated PSO swarm search feature selection for data stream mining big data [J]. IEEE Transactions on Services Computing, 2016, 9(1): 33-45.
[18] 陈大鹏,张九根,梁星.基于免疫粒子群算法的中央空调冷冻水系统优化控制[J].计算机应用,2017,37(9):2717-2721.(CHEN D P, ZHANG J G, LIANG X. Optimal control of chilled water system in central airconditioning based on artificial immune and particle swarm optimization algorithm [J]. Journal of Computer Applications, 2017,37(9): 33-45.) [19] 范成礼,邢清华,李响,等.带反向预测及斥力因子的改进粒子群优化算法[J].控制与决策,2015,30(2):311-315.(FAN C L, XING Q H, LI X, et al. Improved particle swarm optimization algorithm with reverse forecast and repulsion [J]. Control and Decision, 2015, 30(2): 311-315.)
[20] 黄松,田娜,纪志成.基于自适应概率粒子群优化算法的研究[J].系统仿真学报,2016,28(4):874-879.(HUANG S, TIAN N, JI Z C. Study of modified particle swarm optimization algorithm based on adaptive mutation probability [J]. Journal of System Simulation, 2016, 28(4): 874-879.)
[21] 李国栋,胡建平,夏克文.基于云PSO的RVM入侵检测[J].控制与决策,2015,30(4):698-702.(LI G D, HU J P, XIA K W. Intrusion detection using relevance vector machine based on cloud particle swarm optimization [J]. Control and Decision, 2015, 30(4): 698-702.)
[22] MASDARI M, SALEHI F, JALALI M, et al. A survey of PSObased scheduling algorithms in cloud computing [J]. Journal of Network and Systems Management, 2017, 25(1): 122-158.
[23] CHEN S M, CHIOU C H. Multiattribute decision making based on intervalvalued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology [J]. IEEE Transactions on Fuzzy Systems, 2015, 23(6): 1905-1916.
[24] 邱飞岳,莫雷平,江波,等.基于大规模变量分解的多目标粒子群优化算法研究[J].计算机学报,2016,39(12):2598-2613.(QIU F Y, MO L P, JIANG B, et al. Multiobjective particle swarm optimization algorithm using large scale variable decomposition [J]. Chinese Journal of Computers, 2016, 39(12): 2598-2613.)
[25] 鞠文哲,夏克文,戴水东.改进的云粒子群优化算法及其断路器优化应用[J].计算机应用研究, 2018, 25(7):2084-2087.(JU W Z, XIA K W, DAI S D. Improved cloud particle swarm optimization algorithm and its application in circuit breaker optimization[J].Application Research of Computers, 2018, 25(7):2084-2087.)
[26] 王生生,楊娟娟,柴胜.基于混沌鲶鱼效应的人工蜂群算法及应用[J].电子学报,2014,42(9):1731-1737.(WANG S S, YANG J J, CHAI S. Artificial bee colony algorithm with chaotic catfish effect and its application [J]. Acta Electronica Sinica, 2014, 42(9): 1731-1737.)
[27] 刘艺,刁兴春,曹建军,等.求解子集问题的鲶鱼效应蝙蝠蚁群优化[J].系统工程与电子技术,2016,38(10):2441-2448.(LIU Y, DIAO X C, CAO J J, et al. Catfish bat algorithmant colony optimization for subset problems [J]. Systems Engineering and Electronics, 2016, 38(10): 2441-2448.)
[28] GE H W, SUN L, TAN G Z. Cooperative hierarchical PSO with two stage variable interaction reconstruction for large scale optimization [J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2809-2823.
转载注明来源:https://www.xzbu.com/8/view-14941547.htm