多体多自由度量子隐形传态的张量表示
来源:用户上传
作者:
摘 要:目的:找到一種最普遍情况下量子隐形传态的一般表示及代数结构。方法:归纳推理与演绎推理,利用多项式相乘与张量积之间的等价性发现一般规律。结果:将多体单自由度或单体多自由度的量子隐形传态推广至多体多自由度,以及混合态。结论:预言多体多自由度单次量子隐形传态的存在,并包含了已被实验证实的所有特殊情况。
关键词:量子隐形传态;贝尔基;幺正变换
中图分类号:O413 文献标识码:A 文章编号:1671-2064(2020)03-0000-00
0引言
量子隐形传态是十分有趣且充满潜力的量子力学效应,其首次在1993年由Charles Bennett[1]等人提出,两个粒子(包含纠缠态)的量子隐形传态由李大创和曹卓良提出[2]。而在2015年,潘建伟、陆朝阳等人引入并成功完成了单光子多属性的量子传送[3]。本文中,我们将利用多粒子各个属性之间的张量积和贝尔基(Bell states)与标准正交基之间的幺正变换得出较为普适的量子传送表示法。
参考文献
[1] Bennett, C. H. et al. Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels [J].Phys. Rev. Lett,1993,70(13): 1895-1899.
[2] Li Da-Chuang et al. Teleportation of Two-Particle Entangled State via Cluster State [J].Commun. Theor. Phys,2007,47(3):464-466.
[3] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon [J].Nature,2015,518(7540):516-519.
[4] Zwiebach Barton. Quantum Physics II [EB/OL].(2013-12)[2020-01]. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/.
[5] Albeverio S et al. Quantum Teleportation: from Pure to Mixed States and Standard to Optimal[J]. Gender Work & Organization,2003,12(6):551-571.
[6] Harrow Aram. Quantum Physics III [EB/OL].(2016-07)[2020-01].
https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2016/
[7] Yu Chang-Shui et al. Teleportation of Mixed States and Multipartite Quantum States[J].Commun. Theor. Phys,2007,47(6):1041-1044.
收稿日期:2020-01-12
课题:双曲超材料声子极化子电磁性质研究,课题编号:KF20171110。
作者简介:征夏明(1996—),男,安徽芜湖人,硕士研究生,研究方向:强关联电子体系。
Quantum Teleportation of Many-body System with Multiple Degrees of Freedom
ZHENG Xia-ming1,2,3 ZHANG Qiang 2,4
(1.Institute?of?Physical?Science?and?Information?Technology,?Anhui?University,?Hefei Anhui?230039;
2.Key?Laboratory?for?Photonic?and?Electronic?Bandgap?Materials,?Ministry?of?Education,?School?of?Physics?and?Electronic?Engineering,?Harbin?Normal?University,?Harbin?Heilongyjiang 150025;
3.Institute?of?Solid?State?Physics,?Chinese?Academy?of?Sciences,?Hefei Anhui?230031;
4.MOE?Key?Laboratory?of?Engineering?Dielectrics?and?its?Application,?Harbin?University?of Science?and?Technology,?Harbin?Heilongjiang 150080)
Abstract:Objective:Finding a scheme and algebra structure of general quantum teleportation. Methods:Inductive reasoning and deductive reasoning. The equivalence between polynomial multiplication and tensor product.Results: Many-body or multi-degrees of freedom cases are generalized in multiple particles system with higher degrees of freedom, even mixed states. Conclusions:Predicting the existence of quantum teleportation of multiple particles system with higher degrees of freedom. And special cases which is proven by experiment are included.
Keywords:Quantum Teleportation;Bell State; Unitary Transform
转载注明来源:https://www.xzbu.com/8/view-15242523.htm