您好, 访客   登录/注册

污水处理厂的除磷脱氮工艺设计研究

来源:用户上传      作者: 傅盈荧

  【摘 要】随着人们生活水平的提高,对污水排放标准的要求也相应提高了,但是目前中国大多数城镇的污水处理厂却由于各种原因的结合而导致脱氮除磷的效果相当差,出水更是难以达到标准的要求,污水处理不好,给人们的生产及生活带来了很大的不方便。因此,本文针对上述存在的问题,就污水处理厂除磷脱氮的相关工艺设计问题进行了重点探讨,希望通过对该问题的关注,来提高污水处理厂处理污水的效果,以此更好的提高人们的生活水平。
  【关键词】存在问题;除磷实验;脱氮研究
   0.引言
  近几年来,人们的生活水平在党的正确政策带领下,取得了较快提升,各种工厂工业也如雨后春笋般涌现,然而在人们为之高声欢呼的同时,污水排放问题却让人们无所适从,虽然关于污水排放的相关政策很多,但污水排放的效果却不尽如人意,人们在反思自身不足的同时,也采取了更为先进的高科技方法,希望以此来提高污水处理的效率,本文正是在此种背景下,对污水处理厂关于除磷脱氮问题进行了重点讨论与研究。
   1.化学除磷试验研究
  1.1试验装置与试验方法
  为有效配合除磷实验的研究,首先我们可以建一个柱高0.8m,直径0.3m的模拟水池,当水池有反应沉淀现象时,原水和混凝剂溶液均从距底部0.6m处注入,内设JJ-1大功率电动搅拌器,使原水和混凝剂充分混合,将污泥沉淀于混凝池底部排出,以去除原水中的SS 和TP,清水由出水管排出,溶药池也同样使用搅拌器使固体混凝剂充分溶解为液状,并由蠕动泵注入混凝池。化学除磷试验中首先对混凝剂的种类进行优选,并对投药量和搅拌时间两个参数进行优化。
  1.2混凝剂的筛选
  试验选用硫酸铝、聚合氯化铝、硫化铁和聚合硫酸铁4种常用的混凝剂,在搅拌转速100r/min搅拌时间30min的实验条件下,对各个混凝剂在不同投药量下出水的TP和SS 的浓度进行考察,优选出最佳的混凝剂。随着混凝剂投药量的增加,出水SS 的浓度不断降低,但4种混凝剂对SS的去除效果基本相同。而从对TP的去除效果来看,氯化铁和聚合硫酸铁这两种铁盐混凝剂要优于硫酸铝和聚合氯化铝这两种铝盐混凝剂,当投药量增加到30mg/以上时,投加铁盐混凝剂的出水TP的浓度都降到0.5mg/l以下,达到国家一级排A放标准对TP浓度的要求。
  除了具有良好的除磷效果,PFS在价格方面也占有一定的优势,市售PFS为700元/t,市售氯化铁为1100元/t。所以,无论是TP的去除效果还是经济性方面,PFS均为理想的药剂,从实际生产技术经济方面考虑,最终选择PFS为化学除磷的混凝剂。
  1.3运行参数优化
  在确定使用聚合硫酸铁为化学除磷试验的混凝剂后,对投药量和搅拌时间两个参数要进行优化。
  第一,对投入量参数的优化。随着混凝剂PFS投加量的增加,水中TP的浓度不断减少。当投药量达到30ml/g时,水中TP的浓度已低于0.5mg/l,去除率达到75%以上。根据铁盐除磷的化学方程式可知,每去除1mg的磷,需要1.8mg的铁。原水中TP的浓度在1mg/l至4m/l,若使出水TP浓度小于0.5mg/l,最多需要12mg/l的硫酸铁,以至少40% 有效成分计算,需要30mg/l。考虑水解等因素, 最终选定投药量为40mg/l,此时的出水TP浓度为0.3mg/l。可以保证出水水质符合一级A排放标准的要求。
  第二,对搅拌时间参数的优化。随着搅拌时间的增长, 水 中TP 的浓度不断减少。时间从 5min增加到15min, 水中TP 的去除率提高了5.1%,而从15min 增加到30min, 去除率仅提高了2.0%, 故过长的搅拌时间对TP的去除并无显著的效果, 反而会增加额 外的能源消耗和构筑物的建筑体积。
   2.后置反硝化脱氮试验研究
  2.1试验装置与试验方法
  后置反硝化脱氮试验采用三级生物滤柱设计三级滤柱分别为氧化硝化CN池、硝化N池和反硝化DN池,并同时向DN池中投加甲醇作为外加碳源, 即分别进行氧化反应、硝化反应和反硝化, 对污水中的COD、NH3-N和TN进行生化去除。其中CN池和N池使用空压机进行曝气。三级滤柱均采用上向流方式, 使用高压隔膜泵从底部注水, 滤柱中的火山岩滤料粒径分 别为 6~8、4~6、3~5mm。
  2.2运行参数优化
  进水中的COD和NH3-N分别在CN池和N池中进行去除,出水进入DN池后,需要在外加碳源的条件下,将水中的TN予以去除。碳源的投加量将决定TN 的去除效果,投加不足将没有足够的 碳源供反硝化反应的进行,投加过量一方面会增 加额外的经济费用,一方面还会增加出水 COD 的浓度,故中试对后置反硝化的碳源投加量进行了重点考察, 并选择易于生物降解和被反硝化细菌利用的甲醇作为碳源。随着甲醇投加量的增加,进水中可供反硝化 利用的碳源不断增加,出水的 TN 浓度也随之下降,当投加量增加到25mg/ L时, 出水TN浓度已达到一 级A排放标准以下, 但当继续投加到35mg/l时,随着进水中可被利用的硝酸盐和亚硝酸盐浓度的降低,即使继续增加甲醇投加量也难以加快反硝化反应的速率,出水的TN浓度趋于平缓。
  考察投加甲醇过程中进出水的COD浓度变化趋势,当甲醇投加量在535mg/l之间时,出水COD浓度变化并不大,但继续增加40mg/l时,投加的甲醇已不能完全被反硝化反应作为碳源所利用,反而会影响出水的COD浓度。综合投加甲醇对进出水TN和COD变化趋势,确定后置反硝化的甲醇碳源投加量为30mg/l,此时出水TN浓度为9.46mg/l,COD浓度为33mg/l,均符合国家一级A排放标准。
  水力停留时间HRT是指污水与滤池内微生物作用的平均反应时间,是工艺中另一重要控制参数。随着水力停留时间HRT的增长,出水TN的浓度也随之不断下降。但从45min开始,出水TN下降的速率便开始变得平缓,通常反应时间越长,微生物对基质的去除率越高,则在流量一定的条件下,对构筑物的容积要求越大。因此,结合建设费用,确定水力停留时间为45min。
   3.结论
  第一,污水处理厂升级改造选择化学除磷进行深度处理,选用聚合硫酸铁为混凝剂,在投药量为40mg/l、搅拌时间为15min 的条件下,使出水TP浓度保持在0.5mg/l以下。
  第二,在水厂现有两级曝气生物滤池工艺基础上,增加后置反硝化工艺进行水厂深度脱氮的升级改造,可使用甲醇作为外加碳源,其投加量为30mg/l, 使出水TN及COD指标均能够达到一级A排放标准。
  第三,采用后置反硝化工艺进行深度脱氮的升级改造,单池水力停留时间为45min的条件下,出水TN浓度保持在15mg/l以下,实现一级A达标排放。
  总之,在高科技的社会主义市场经济大背景下,为实现效益的最大化,我们就应该尽可能的引用高新技术,来为我们的效益服务。随着人们生活水平的提高,人们的精神需求也是日益提升,但与此同时,生活尤其是工业污水却一直困扰着人们,而且也给人们的生活及工作带来了很大的不方便,更有甚者,污水如果得不到及时处理,会对我们赖以生存的地下水造成极大的污染,这样就会直接威胁到人们的生活及生产,因此污水厂无论是出于自身经济效益的考虑,还是出于对人们生活负责人的角度,都应该提高污水处理的效果,尽可能多的将污水进行有效的处理,这就需要污水处理厂除在人员配置方面下工夫外,还要多多引进先进的技术,来对污水进行有效处理,上文介绍的除磷脱氮技术研究就是应用高科技水平的很好实例。这样一来,我们不仅可以很好解决水资源严重不足的问题,解决好广大西北部地区严重缺水的问题,同时我们还可以很好的净化我们的水资源,另外,环境问题也会随着污水的处理而变得不再是困扰人们的问题,可谓是一举多得。本文重点针对除磷脱氮技术进行了相关的研究与讨论,相信通过该技术的实际应用,污水厂的污水处理问题会得到很好的解决。
  
  【参考文献】
  [1]龚云华,高廷耀.混合化工废水处理的工艺试验研究[J].给水排水,2003.
  [2]魏新庆.曝气生物滤池的研究发展动态环境工程[J].环境工程,2004.
  [3]杨维,孙炳双,周玉文.辽河流域辽宁省水污染防治规划及治理措施[J].给水排水,2001.


转载注明来源:https://www.xzbu.com/8/view-1702100.htm