一种单电容集中式均衡电路
来源:用户上传
作者:
摘 要:传统BuckBoost型电池均衡电路存在能量传输路径长和均衡速度慢等缺点,而其改进型电路也存在电路复杂、均衡速度不一致的问题。提出一种单电容集中式均衡电路,该电路利用电容器作为虚拟电池临时存储能量,而后周期性地将存储的能量反馈回整组电池,实现对电池组的均衡,解决了传统BuckBoost均衡电路均衡速度不一致的问题。在研究了该均衡电路的工作模式和控制策略的基础上,设计了4个电池的均衡实验电路对工作原理和控制策略进行验证,并进行对比实验。实验结果表明,该均衡电路具有均衡速度快、各电池单体均衡速度一致、能量损耗小的优点。
关键词:电池均衡;BuckBoost;单电容;均衡速度;控制策略
DOI:10.15938/j.emc.2020.03.001
中图分类号:TM 912文献标志码:A文章编号:1007-449X(2020)03-0001-10
Abstract:Traditional BuckBoost battery equalizer has a long energy transmission path and slow speed, when the imbalanced cells are not adjacent. However, the modified circuit has the problems of complexity and inconsistent equalization speed. In order to solve the above problems, a singlecapacitor centralized battery equalizer based on BuckBoost converter is proposed. The equalizer uses a capacitor as a virtual battery to store battery energy temporarily, and then the stored energy is fed back to the whole battery periodically to realize all cell voltages being uniform, which solves the problem of the inconsistent equalization speed for traditional BuckBoost equalizer. Based on the research of the working mode and control strategy of the equalization circuit, the balanced experimental circuit with four batteries was designed to verify the working principle and control strategy, and several sets of comparative experiments were carried out. The experimental results show that the equilibrium topology has advantages of equilibrium speed, each battery monomer equilibrium speed and low energy loss.
Keywords:battery equalizer; BuckBoost; singlecapacitor; balancing speed; control strategy
0 引 言
如今,儲能单元已成为生产、生活中不可或缺的一部分。而锂离子电池以其能量密度大、自放电小、使用寿命长等优点在生活中被广泛采用。常见锂离子电池单体电压较低,往往需要多个单元串联成组才能实现高压输出。由于制造过程中很难保证各单体内阻、自放电率等参数的一致性,使用过程中电池组串联单元间不均衡现象极易发生,而单体电池过充和过放现象都会大幅度降低电池的使用寿命,影响电池组的整体性能[1-3]。因此,研究性能更加优异的电池均衡电路对提高串联电池组性能和续航能力具有重要意义。
均衡电路总体上可分为无源均衡电路和有源均衡电路[2,4]。有源均衡电路由于具有能量损耗低、均衡精度高等特点,已成为国内外研究热点。从均衡方式上,有源均衡电路可分为集中式均衡电路和分布式均衡电路。根据电路工作原理的不同,集中式均衡电路又可分为多绕组变压器型、BuckBoost型和DCDC变换器型均衡电路[2,3]。多绕组变压器型均衡电路受变压器体积及加工工艺的影响,难以满足高精度、大数量电池均衡的实际需要[5-9]。在实际应用中,多采用BuckBoost型和DCDC变换器型均衡电路[10-13]。BuckBoost型均衡电路,通过对分流电感周期性的充放电,从而实现电池组中能量的转移。
早期由Kutu提出了一种采用电流转移方式实现均衡的BuckBoost变换器集中式拓扑结构[14],利用反激变换器回馈能量,该均衡电路体积大、均衡速度慢。文献[15]对上述电路进行改进,利用一套独立的BuckBoost变换器代替反激变换器,体积得到一定程度减小,但未能解决均衡时能量传输路径长、均衡速度慢等问题。文献[16-19]采用双向BuckBoost变换器对BuckBoost集中式均衡结构进行改进,实现能量在相邻电池单体之间的双向传递,但有源开关数量增多,电路复杂性加大。文献[20]提出可同时实现单对多、多对单能量传递的均衡方案,均衡速度有了很大提高,但其均衡速度与上下游串联电池单体数量直接相关。 国内也有学者对BuckBoost型均衡电路进行优化研究,文献[21]在传统BuckBoost型均衡拓扑上增加一组BuckBoost实现对上下半区的均衡,加快了均衡速度。文献[22]中采用了模块化分组的方式,增加了电路的拓展性。但就目前已有的BuckBoost型均衡电路而言,还没有有效的解决电池单体均衡速度不一致的方案。
本文提出一种基于BuckBoost变换器的单电容集中式均衡电路,利用电容器作为虚拟电池临时存储能量,而后周期性地将电容器存储的能量反馈回整组电池,从而实现对电池组的均衡。本文提出的均衡电路体积小、有源器件少、控制简单,解决了传统BuckBoost类均衡电路均衡速度慢、单体电池均衡速度不一致等问题。本文通过研究该均衡电路的工作模式,采用电池电压分时采样以及单周期内最大均衡电流的控制方法,详细的分析了所提均衡电路的工作原理。最后,本文搭建了四电池均衡实验电路并进行相关实验验证,实验结果表明该均衡电路具有均衡速度快、各电池单体均衡速度一致、能量损耗小的优点。
1 波形分析与电流路径
所提出的单电容集中式均衡电路如图1所示。若要对电池Bi放电,则该电池对应的开关管Si周期性导通,此时,电池Bi与电容C1之间,通过电感、开关管和二极管构成了BuckBoost衍生结构电路,该衍生结构电路与传统BuckBoost变换器拓扑结构相类似,如图2所示。
6 结 论
本文提出了一种单电容集中式电池均衡电路,该均衡电路均衡速度快、各电池单体均衡速度一致性好。本文详细分析了该均衡电路的工作模式和控制策略,通过仿真与实验对该电路与传统BuckBoost型均衡电路进行了对比分析,设计制作了针对4个电池单体的均衡实验电路,并进行静置、充电和放电下的均衡实验。实验表明:单电容集中式均衡电路能够有效解决传统BuckBoost型均衡电路均衡速度一致性差的问题,提高了均衡速度,极大地拓宽了BuckBoost型电池均衡电路在实际中的应用范围。
参 考 文 献:
[1] UNO M, KUKITA A. Singleswitch singletransformer cell voltage equalizer based on forward–flyback resonant inverter and voltage multiplier for seriesconnected energy storage cells [J]. IEEE Transactions on Vehicular Technology, 2014, 63(9): 4232.
[2] 陳洋, 刘晓芳, 杨世彦, 等. 串联电池组有源均衡拓扑结构综述[J]. 电源学报, 2013(5): 28.
CHEN Yang, LIU Xiaofang, YANG Shiyang, et al. Overview of active equalization for series connected batteries [J]. Journal of Power Supply, 2013(5):28.
[3] 沈聃, 夏正鹏, 倪红军, 等. 电动汽车串联电池组电压均衡系统研究进展[J]. 电源技术, 2014, 38(2): 390.
SHEN Dan, XIA Zhengpeng, NI Hongjun, et al, Research progress of equalization charging for EV traction battery [J]. Chinese Journal of Power Sources, 2014, 38(2): 390.
[4] 盖晓东. 基于三单体直接均衡电路的串联储能电源组均衡技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[5] HSIEH Y C, WU J L, CHEN X. ClassEbased chargeequalisation circuit for battery cells[J].IET Power Electronics,2012,5(7):978.
[6] HUA C C, FANG Y H, LI P H. Charge equalisation for seriesconnected LiFePO4 battery strings [J]. IET Power Electronics, 2015, 8(6):1017.
[7] LI S, MI C C, ZHANG M. A highefficiency active batterybalancing circuit using multiwinding transformer [J]. IEEE Transactions on Industry Applications, 2013, 49(1):198.
[8] KUTKUT N H. Nondissipative current diverter using a centralized multiwinding transformer [C]// proceedings of the Power Electronics Specialists Conference, Saint Louis, MO, USA, 1997:648.
[9] CHEN Y,LIU X,CUI Y,et al.A multiwinding transformer celltocell active equalization method for lithiumIon batteries with reduced number of driving circuits [J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4916. [10] IMTIAZ A M, KHAN F H. Time shared flyback converter based regenerative cell balancing technique for series connected Liion battery strings [J]. IEEE Transactions on power Electronics, 2013, 28(12): 5960.
[11] LEE Y S, CHEN M W, HSU K L, et al. Cell equalization scheme with energy transferring capacitance for series connected battery strings [C]// proceedings of the TENCON'02 Proceedings 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing, China, 2002, 2042-2045.
[12] PARK H, KIM C, KIM G, et al. A modularized charge equalizer for an HEV lithiumion battery string [J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1464.
[13] LAMBERT S M, PICKERT V, ATKINSON D J, et al. Transformerbased equalization circuit applied to Nnumber of high capacitance cells [J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1334.
[14] KUTKUT N H. A modular nondissipative current diverter for EV battery charge equalization [C]// APEC '98 Thirteenth Annual Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 1998, 686-690.
[15] MOO C S, HSIEH Y C, TSAI L S. Charge equalization for seriesconnected batteries [J]. IEEE Transaction on Aerospace and Electronic Systems. 2003, 39(2):704.
[16] BARRADE P. Series connection of supercapacitors: comparative study of solutions for the active equalization of the voltages [C]//International Conference on Modeling and Simulation of Electric Machines, Converters and Systems. Montreal, Canada. 2003,381-407.
[17] SHEN H, ZHU W, CHEN W. Charge equalization for series connected lithiumion batteries[C]// 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 2009, 1032-1037.
[18] LEE Y S, DUH C Y.Battery equalization using bidirectional Cuk converters in DCVM Operation [C]// 2005 IEEE 36th Power Electronics Specialists Conference, Recife, 2005, 765-771.
[19] 李海冬, 冯之钺, 齐智平. 一种超级电容器快速电压均衡方法的研究[J]. 电源技术,2007, 31(3):186.
LI Haidong, FENG Zhiyue, QI Zhiping. Study on a rapid voltage balancing method for supercapacitor[J]. Chinese Journal of Power Sources, 2007, 31(3):186.
[20] MESTRALLET F, KERACHEV L, CREBIER J, et al. Multiphase interleaved converter for lithium battery active balancing [J]. IEEE Transactions on Power Electronics, 2014, 29(6): 2874.
[21] 李锐华,李冀,胡波,等. 基于BuckBoost变换器的磷酸铁锂电池串联电压均衡优化策略[J]. 电气技术,2018, 19(3):1.
LI Ruihua, LI Ji, HU Bo, et al. Voltage equalization optimization strategy for LIFEPO4 seriesconnected battery packs based on buckboost converter [J]. Electrical Engineering, 2018, 19(3):1.
[22] DONG B, LI Y, HAN Y H. Parallel architecture for battery charge equalization [J]. IEEE Transactions on Power Electronics [J]. 20155, 30(9): 4906.
[23] 徐顺刚. 分布式供电系统中储能电池均衡管理及逆变控制技术研究[D]. 成都: 西南交通大学, 2011.
[24] MOO C S, HSIEH I S, TSAI I S, et al. Dynamic charge equalisation for seriesconnected batteries [J]. IEEE Proceedings on Electric Power Applications. 2003, 150(5): 501.
(編辑:贾志超)
转载注明来源:https://www.xzbu.com/1/view-15174110.htm