您好, 访客   登录/注册

土壤酶及其生态指示作用研究进展

来源:用户上传      作者:

  摘要 土壤酶催化土壤生物地球化学反应,推动土壤生态系统中的物质循环和能量流动。从土壤酶的来源、存在状态及功能、土壤酶活性的分布特征及时空动态变化进行了概述,强调了土壤酶活性对土地利用方式、耕作管理、施肥、农药和地膜的使用及重金属污染等的生态指示作用,为更好地利用土壤酶来及时了解土壤生态系统功能的运行状况及采取适当管理措施提供支持。
  关键词 土壤酶;分布特征;时空动态;生态指示作用
  中图分类号 S154.2  文献标识码 A
  文章编号 0517-6611(2020)18-0014-04
  Abstract Soil enzymes catalyze biogeochemical reactions in soil and drive material circulation and energy flow in the ecosystem.This paper summarized soil enzyme sources,status,functions,distribution characteristics and spatiotemporal dynamics,emphasizing that soil enzyme activities indicate changes in land use type,tillage and management,fertilization,pesticide application,plastic film use and heavy metal pollution in ecosystem.This paper was expected to provide support for better learning soil ecosystem function changes so that proper management measures can be taken as soon as possible.
  Key words Soil enzymes;Distribution characteristics;Spatiotemporal dynamics;Ecosystem indicator
  土壤酶催化生物地球化學反应的进行,推动着土壤中的物质转化、元素循环和能量流动[1-2],促进有机质的矿化和有机污染物的降解,与土壤肥力质量和土壤健康质量紧密联系,指示土壤生态系统功能[3-4]。笔者对土壤酶的来源、在土壤中的存在状态及功能、土壤酶活性的分布特征及时空动态变化、土壤酶的生态指示作用等方面进行论述,旨在为更好地利用土壤酶来认识土壤生态系统变化从而及时采取适当的管理措施提供理论支持。
  1 土壤酶的来源、存在状态及功能
  1.1 来源
  土壤酶主要来源于土壤中的微生物、动物和植物,其中大部分来源于植物及土壤微生物,少量来源于蚯蚓、蚂蚁等土壤动物。一方面,这些生物在生命活动过程中向环境(土壤)中不断分泌各种酶;另一方面,这些生物死后,它们的残体在分解过程中不断向环境中释放各种酶[5]。
  1.2 存在状态
  进入土壤后的酶以不同的状态存在于土壤中,可分为自由态、吸附态和结合态。自由态的酶游离在土壤溶液中,活性大,但容易失活。有的酶吸附在土壤有机质和无机胶体上,这些吸附态的酶活性较大,不易失活。还有的酶与土壤腐殖质的基团结合,活性小,但稳定。土壤中自由态的酶比较少,大部分以酶-腐殖质、酶-无机矿物胶体、酶-有机无机复合体的形式存在[6]。
  1.3 功能 土壤酶在土壤有机质矿化及元素循环中起着重要的作用,有机质矿化过程中的每一步都是在各种酶的催化下进行的,如木聚糖酶、转化酶、纤维素酶等催化碳键断裂[7-8]。植物枯枝落叶中复杂的氮聚合物在蛋白酶、氨肽酶、氨基酸氧化酶及转氨酶等一系列土壤酶的催化作用下,分解为多肽、氨基酸,最后转化为可被植物吸收利用的无机态氮(NH4+与NO3-)。表1列举了一些受到广泛关注的土壤酶,这些酶或者与具体某个元素的循环紧密相关,如脲酶、酸性磷酸酶等[9-10],或者具有指示微生物整体活性的作用,如脱氢酶、荧光素二乙酸酯水解酶[3,11]。
  2 土壤酶活性的分布特征
  土壤酶来源于土壤微生物、植物及土壤动物,主要吸附在有机质及黏粒表面或与土壤腐殖质的基团结合。因此,土壤酶在土壤中的分布与土壤微生物在土壤中的分布、植物根系在土壤中的分布及土壤动物在土壤中的活动分布密切相关,反映土壤有机质及黏粒分布,也反映根系代谢活性及微生物活性。具体而言,在土壤垂直方向上,土壤酶活性普遍随着土壤深度的增加而降低,在有机质含量高、根系密集分布、土壤微生物及动物活跃的土壤表层(如0~20 cm),土壤酶活性高;而在有机质含量低、根系少、微生物及动物少的土壤深层,土壤酶活性低[20]。如在太湖地区典型水稻土剖面中,15~40 cm土层中的葡糖苷酶活性大约为表层(0~15 cm)土壤中葡糖苷酶活性的25%,剖面60 cm处的葡糖苷酶活性约为表层的10%[22]。这种上下土层间酶活性的差异在森林土壤中更为明显,农田土壤在耕作过程中经常翻耕,酶活性在土层间的差异因而减小[17]。在土壤水平方向上,根际土壤酶活性高,距离根际越远,土壤酶活性越低[23-24]。这种分布特征在植物根系的完全形成期尤为明显[23]。这一方面是根向土壤中分泌酶的结果,另一方面也是根分泌物对酶的诱导作用。酶谱分析法也直观形象地展示了土壤酶在土壤中的这一分布特征[25-26]。
  3 土壤酶活性的时空动态变化
  土壤酶本质上是有活性的生物大分子蛋白质类物质,土壤酶活性对环境温度及湿度变化反应灵敏。Sardans等[27]研究表明,当土壤湿度降低21%,脲酶活性降低10%~67%,而酸性磷酸酶活性降低31%~40%。小范围内(如某一田块),土壤酶在土壤中的分布主要受土壤有机质和植物生长影响,反映土壤有机质分布和根系活性;而在大范围内,土壤酶活性则主要受环境温度和湿度影响,与土壤温度、湿度显著相关,反映环境温度和湿度变化[28]。具体体现在不同季节间的差异,山的南、北坡之间的差异、山脚与山顶间的差异以及不同纬度间的差异。如纤维素酶、转化酶、多酚氧化酶、过氧化氢酶、硝酸还原酶、脲酶、酸性及碱性磷酸酶活性都表现为夏季高、冬季低[21]。又如长江中下游过渡地区灌木林土壤中的过氧化氢酶、脱氢酶、多酚氧化酶、脲酶及转化酶都表现为7和10月的活性大于4月,12月活性最低。酶活性季节间的变化在土壤表层尤其明显。因此,酶活性在不同土层间的差异也在7和10月最为明显,而在12月最小[20]。北坡磷酸酶、芳基硫酸酯酶和脲酶活性比南坡的高,磷酸酶和芳基硫酸酯酶活性从山脚向山顶逐渐升高[29]。在我国东北松辽平原,纬度越高的地区,农田土壤中的转化酶和酸性磷酸酶活性越高[30]。   4 土壤酶的生态指示作用
  土壤酶活性受到环境温度、湿度、pH、底物浓度、抑制剂等众多因素影响,对不同土地利用方式、农田耕作制度与管理措施、气候变化、污染等引起的土壤环境变化非常敏感,能够做出迅速的反应,对于土壤质量变化、关键土壤过程的功能多样性有指示作用[5]。
  调查数据表明,农田土壤中的α-葡糖苷酶、β-木糖苷酶、芳基硫酸酯酶、磷酸酶等酶活性明显比同地区草地和森林中的酶活性低[31-42]。主要原因是农田土壤有机质低,酶底物浓度低且种类单一。保护性耕作能够降低耕作频率,提高了底物浓度,有利于土壤酶活性维持在较高水平。如水稻-小麦轮作,两季作物都采用免耕時土壤酶活性最高,其次是只有一季作物采用免耕的,两季作物均采用常规耕作时土壤酶活性最低[33]。与少耕及常规耕作相比,免耕时酶活性高,尤其在表层[34]。秸秆还田增加了农田有机质的输入,给土壤酶提供了丰富的底物,很多酶会受到诱导而活性提高。在Hemkemeyer等[35]的研究中,连续4年的秸秆还田后,0~60 cm 土层中的脲酶、磷酸酶和转化酶活性分别平均提高19.6%、39.4%和44.3%,并且秸秆还田的量越大,酶活性提高越多。与添加有机物不同,化肥的施用通常对酶活性产生抑制作用。如几丁质酶活性随着土壤无机氮含量的升高而降低[36-37]。同样,无机磷肥的施用通常导致磷酸酶活性的降低[37]。施用(NH4)2SO4后,土壤中芳基硫酸酯酶活性降低[38]。农药使用短期内即对土壤酶活性产生强烈的抑制作用。在Sanchez-Hernandez等[15]的研究中,毒死蜱施用14 d后羧酸酯酶活性下降62%~78%,酸性磷酸酶活性下降56%~60%,β-葡糖苷酶活性下降43%~58%,脱氢酶活性下降47%,过氧化氢酶活性下降38%。在很多关于农药施用的长期试验中,指示土壤微生物整体活性的脱氢酶活性普遍降低,纤维素酶活性升高,而芳基硫酸酯酶活性变化不明显[39]。
  农业生产中采用的地膜覆盖以及现在日益严重的白色污染,很多微塑料进入土壤,受到微塑料污染的土壤中FDA水解酶活性降低,与细菌群落丰度和多样性降低一致[11]。在受到溴化阻燃剂四溴双酚A污染的土壤中,过氧化氢酶、过氧化物酶和多酚氧化酶的活性都发生变化,但它们对污染的敏感程度及它们的变化趋势是不同的。过氧化氢酶活性在3.75 mg/kg的四溴双酚A浓度下即显著增加,而过氧化氢酶和多酚氧化酶活性只有在75 mg/kg的四溴双酚A浓度下才出现显著变化,其中前者显著降低,后者显著升高[19]。同样地,脲酶活性在75 mg/kg的四溴双酚A浓度下才显著受到抑制,而磷酸酶活性在低四溴双酚A浓度时显著升高,在四溴双酚A浓度达到75 mg/kg时又显著降低。
  我国及世界范围内很多农田受到工业废水污染,又或者是水资源紧张的干旱半干旱区用含重金属的污水来进行农业灌溉。受重金属污染的土壤中酶活性显著降低[40]。其中,脱氢酶和芳基硫酸酯酶活性对重金属尤其敏感[41-42]。据Subrahmanyam等[43]的报道,经过20年工业废水的影响,中度污染土壤中脱氢酶、碱性磷酸酶、β-葡糖苷酶和蛋白酶活性分别下降27.5%、23.6%、22.8%和19.5%,而重度污染土壤中分别下降46%、51.8%、44.5%和30.9%。在重金属复合污染的采矿区,如锌、铜、铬、锰及镍复合污染的矿区,转化酶与β-葡糖苷酶活性显著低于无污染土壤中对应酶活性,并且重金属污染越严重,这2个酶活性越低[44]。Fang等[45]研究表明对农田铅、镉污染最为敏感的是脲酶,而对草地及林地铅、锌、镉污染最为敏感的酶是过氧化氢酶和磷酸酶。
  酶活性在指示生态系统恶化的同时也能指示生态系统功能的恢复。据Feng等[20]报道,退化林地在恢复的过程中,过氧化氢酶、脱氢酶、多酚氧化酶、脲酶和转化酶活性也在提高,在11年后达到高峰,此后稳定或稍有下降。在重金属污染修复过程中,酶活性的变化不仅反映土壤生态系统功能的恢复,也反映修复所用方法及材料在不同土壤的相互作用对土壤微生物及酶的影响。Jia等[46]研究发现生物炭修复重金属污染土壤中的脲酶与转化酶活性分别提高137.5%与67.9%。Tang等[47]研究表明生物炭抑制土壤酶活性,堆肥促进酶活性,两者结合则对不同的酶效果不一样。重金属复合污染土壤用FeCl3淋洗后,脲酶、蔗糖酶和过氧化氢酶活性都显著降低,添加石灰、生物炭或黑碳后酶活性有所提高,其中石灰效果最好[48]。
  综上,由于土壤理化性质,如土壤容重、有机质、阳离子交换量等,一般变化比较缓慢,对土壤短期变化不敏感,等这些性质发生比较明显的变化时,土壤肥力或质量通常已经发生了非常大的或不可逆的变化,因而无法作为土壤生态系统功能变化的早期预警指数,寻找能够快速应答环境胁迫的土壤质量指标显得尤其重要。学者们的目光开始投向能快速响应环境变化、反映土壤质量变化趋势、可普遍适用于不同土壤生态系统的生化指标,如土壤酶[49]。Eivazi等[16]研究表明酸性磷酸酶、碱性磷酸酶、α-葡糖苷酶、芳基硫酸酯酶和脲酶活性可以很好地反映耕作系统、管理历史及土壤性质。Muscolo等[3]研究指出荧光素二乙酸酯水解酶可指示由气候变化引起的土壤质量变化。Sanchez-Hernandez等[15]证明了羧酸酯酶是有机磷污染的一个敏感指标。Duan等[26]研究则说明过氧化氢酶和蔗糖酶对铅、锌及镉污染最为敏感。
  
  5 结语
  土壤酶作为土壤质量指标,指示土壤肥力质量及土壤健康质量已为大家所接受。但不同的酶分子组成、结构不同,催化的反应不同,受众多环境因素影响,因此,酶活性变化背后所指示的生态功能或进程需要就具体的酶、具体的生态环境来讨论,并没有像土壤物理化学性质那样简单普遍适用的结论。目前大部分土壤酶的研究还是局限于测定其活性,而酶活性的测定方法尚无统一标准的方法,用干土还是鲜土,是否要加缓冲剂,是否要振荡,是否要恒温,合适的水土比等问题一直存在争议。而土壤酶的分子生物学研究也在兴起和发展,借助分子生物学手段将能更好地利用土壤酶来及时快速了解生态系统功能的变化趋势,从而能更及时快速采取适宜的管理措施。   參考文献
  [1] TRESEDER K K,VITOUSEK P M.Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J].Ecology,2001,82(4):946-954.
  [2] NANNIPIERI P,GIAGNONI L,RENELLA G,et al.Soil enzymology:Classical and molecular approaches[J].Biology and fertility of soils,2012,48(7):743-762.
  [3] MUSCOLO A,SETTINERI G,ATTIN E.Early warning indicators of changes in soil ecosystem functioning[J].Ecological indicators,2015,48:542-549.
  [4] TRAP J,RIAH W,AKPAVINCESLAS M,et al.Improved effectiveness and efficiency in measuring soil enzymes as universal soil quality indicators using microplate fluorimetry[J].Soil biology and biochemistry,2012,45:98-101.
  [5] CALDWELL B A.Enzyme activities as a component of soil biodiversity:A review[J].Pedobiologia,2005,49(6):637-644.
  [6] RAO M A,VIOLANTE A,GIANFREDA L.Interaction of acid phosphatase with clays,organic molecules and organomineral complexes:Kinetics and stability[J].Soil biology and biochemistry,2000,32(7):1007-1014.
  [7] STEMMER M,GERZABEK M H,KANDELER E.Invertase and xylanase activity of bulk soil and particlesize fractions during maize straw decomposition[J].Soil biology and biochemistry,1998,31(1):9-18.
  [8] DENG S P,TABATABAI M A.Cellulase activity of soils[J].Soil biology and biochemistry,1994,26(10):1347-1354.
  [9] KLOSE S,TABATABAI M A.Urease activity of microbial biomass in soils[J].Soil biology and biochemistry,1999,31(2):205-211.
  [10] LEMANOWICZ J,KRZY?ANIAK M.Vertical distribution of phosphorus concentrations,phosphatase activity and further soil chemical properties in salt-affected Mollic Gleysols in Poland[J].Environmental earth sciences,2015,74(3):2719-2728.
  [11] FEI Y F,HUANG S Y,ZHANG H B,et al.Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J].Science of the total environment,2019,707:1-9.
  [12] HE D Y,CUI J,GAO M,et al.Effects of soil amendments applied on cadmium availability,soil enzyme activity,and plant uptake in contaminated purple soil[J].Science of the total environment,2019,654:1364-1371.
  [13] ANANBEH H,STOJANOVIC′ M,POMPEIANO A,et al.Use of soil enzyme activities to assess the recovery of soil functions in abandoned coppice forest systems[J/OL].Science of the total environment,2019,694[2019-12-15].https://doi.org/10.1016/j.scitotenv.2019.133692.
  [14] OU Y,ROUSSEAU A N,WANG L X,et al.Identification of the alteration of riparian wetland on soil properties,enzyme activities and microbial communities following extreme flooding[J].Geoderma,2019,337:825-833.   [15] SANCHEZ-HERNANDEZ J C,SANDOVAL M,PIERART A.Shortterm response of soil enzyme activities in a chlorpyrifostreated mesocosm:use of enzymebased indexes[J].Ecological indicators,2017,73:525-535.
  [16] EIVAZI F,BAYAN M R,SCHMIDT K.Select soil enzyme activities in the historic Sanborn Field as affected by longterm cropping systems[J].Communications in soil science and plant analysis,2003,34(15/16):2259-2275.
  [17] LEBRUN J D,TRINSOUTROTGATTIN I,VINCESLASAKPA M,et al.Assessing impacts of copper on soil enzyme activities in regard to their natural spatiotemporal variation under longterm different land uses[J].Soil biology and biochemistry,2012,49:150-156.
  [18] RAIESI F,BEHESHTI A.Soil specific enzyme activity shows more clearly soil responses topaddy rice cultivation than absolute enzyme activity in primaryforests of northwest Iran[J].Applied soil ecology,2014,75:63-70.
  [19] WANG Y,ZHANG M,ZHAO L F,et al.Effects of tetrabromobisphenol A on maize (Zea mays L.) physiological indexes,soil enzyme activity,and soil microbial biomass[J].Ecotoxicology,2019,28:1-12.
  [20] FENG C,MA Y H,JIN X,et al.Soil enzyme activities increase following restoration of degraded subtropical forests[J].Geoderma,2019,351:180-187.
  [21] WANG C Y,L Y M,WANG L,et al.Insights into seasonal variation of litter decomposition and related soil degradative enzyme activities in subtropical forest in China[J].Journal of forestry research,2013,24(4):683-689.
  [22] WANG X C,LU Q.BetaGlucosidase activity in paddy soils of the Taihu Lake region,China[J].Pedosphere,2006,16(1):118-124.
  [23] DELGADO M,ZUNIGAFEEST A,ALMONACID L,et al.Cluster roots of Embothrium coccineum (Proteaceae) affect enzyme activities and phosphorus lability in rhizosphere soil[J].Plant and soil,2015,395(1/2):189-200.
  [24] RAZAVI B S,ZAREBANADKOUKI M,BLAGODATSKAYA E,et al.Rhizosphere shape of lentil and maize:Spatial distribution of enzyme activities[J].Soil biology and biochemistry,2016,96:229-237.
  [25] SPOHN M,CARMINATI A,KUZYAKOV Y.Soil zymography—A novel in situ method for mapping distribution of enzyme activity in soil[J].Soil biology and biochemistry,2013,58:275-280.
  [26] DUAN C J,FANG L C,YANG C L,et al.Reveal the response of enzyme activities to heavy metals through in situ zymography[J].Ecotoxicology and environmental safety,2018,156:106-115.
  [27] SARDANS J,PEN~UELAS J.Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L.forest[J].Soil biology and biochemistry,2005,37:455-461.   [28] BOWLES T M,ACOSTAMARTNEZ V,CALDERN F,et al.Soil enzyme activities,microbial communities,and carbon and nitrogen availability in organic agroecosystems across an intensivelymanaged agricultural landscape[J].Soil biology and biochemistry,2014,68:252-262.
  [29] NAHIDAN S,NOURBAKHSH F,MOSADDEGHI M R.Variation of soil microbial biomass C and hydrolytic enzyme activities in a rangeland ecosystem:Are slope aspect and position effective?[J].Archives of agronomy and soil science,2015,61(6):797-811.
  [30] LIU X M,LI Q,LIANG W J,et al.Distribution of soil enzyme activities and microbial biomass along a latitudinal gradient in farmlands of Songliao Plain,Northeast China[J].Pedosphere,2008,18(4):431-440.
  [31] SˇTURSOV M,BALDRIAN P.Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soilbound and free activity[J].Plant and soil,2011,338(1/2):99-110.
  [32] WALLENIUS K,RITA H,MIKKONEN A,et al.Effects of land use on the level,variation and spatial structure of soil enzyme activities and bacterial communities[J].Soil biology and biochemistry,2011,43(7):1464-1473.
  [33] PANDEY D,AGRAWAL M,BOHRA J S.Assessment of soil quality under different tillage practices during wheat cultivation:Soil enzymes and microbial biomass[J].Chemistry and ecology,2015,31(6):510-523.
  [34] ROLDAN A,SALINASGARCIA J R,ALGUACIL M M,et al.Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions[J].Geoderma,2005,129(3/4):178-185.
  [35] HEMKEMEYER M,CHRISTENSEN B T,MARTENS R,et al.Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants[J].Soil biology and biochemistry,2015,90:255-265.
  [36] ALLISON S D,CZIMCZIK C I,TRESEDER K K.Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J].Global change biology,2008,14:1156-1168.
  [37] ANDERSSON M,KJRˇLLER A,STRUWE S.Microbial enzyme activities in leaf litter,humus and mineral soil layers of European forests[J].Soil biology and biochemistry,2004,36:1527-1537.
  [38] PRIETZEL J.Arylsulfatase activities in soils of the Black Forest/Germany:Seasonal variation and effect of (NH4)2SO4 fertilization[J].Soil biology and biochemistry,2001,33:1317-1328.
  [39] RIAH W,LAVAL K,LAROCHEAJZENBERG E,et al.Effects of pesticides on soil enzymes:A review[J].Environmental chemistry letters,2014,12(2):257-273.   [40] MA S C,ZHANG H B,MA S T,et al.Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties,heavy metal uptake and grain yield in winter wheat[J].Ecotoxicology and environmental safety,2015,113:483-490.
  [41] HU X F,JIANG Y,SHU Y,et al.Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields[J].Journal of geochemical exploration,2014,147:139-150.
  [42] XIAN Y,WANG M E,CHEN W P.Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties[J].Chemosphere,2015,139:604-608.
  [43] SUBRAHMANYAM G,SHEN J P,LIU Y R,et al.Effect of longterm industrial waste effluent pollution on soil enzyme activities and bacterial community composition[J].Environmental monitoring and assessment,2016,188(2):1-13.
  [44] YANG G,DONG F Q,LIU M X,et al.Interactive effect of radioactive and heavymetal contamination on soil enzyme activity in a former uranium mine[J].Polish journal of environmental studies,2018,27(3):1-9.
  [45] FANG L C,LIU Y Q,TIAN H X,et al.Proper land use for heavy metalpolluted soil based on enzyme activity analysis around a PbZn mine in Feng County,China[J].Environmental science and pollution research,2017,24:28152-28164.
  [46] JIA W L,WANG B L,WANG C P,et al.Tourmaline and biochar for the remediation of acid soil polluted with heavy metals[J].Journal of environmental chemical engineering,2017,5(3):2107-2114.
  [47] TANG J Y,ZHANG L H,ZHANG J C,et al.Physicochemical features,metal availability and enzyme activity in heavy metalpolluted soil remediated by biochar and compost[J/OL].Science of the total environment,2020,701[2019-12-15].https://doi.org/10.1016/j.scitotenv.2019.134751.
  [48] ZHAI X Q,LI Z W,HUANG B,et al.Remediation of multiple heavy metalcontaminated soil through the combination of soil washing and in situ immobilization[J].Science of the total environment,2018,635:92-99.
  [49] PAZFERREIRO J,TRASARCEPEDA C,DEL CARMEN LEIRS M,et al.Intraannual variation in biochemical properties and the biochemical equilibrium of different grassland soils under contrasting management and climate[J].Biology and fertility of soils,2011,47(6):633-645.
转载注明来源:https://www.xzbu.com/1/view-15320179.htm