您好, 访客   登录/注册

通信蓄电池日常维护和原理

来源:用户上传      作者:

  摘 要:蓄电池是组合通信电源系统的重要组成部分,所占的投资比例不小,加强对蓄电池的管理,改善其使用状况,从而有效地延长蓄电池的使用寿命,具有重要的意义;从通信设备用阀控式密封蓄电池在实际使用中的维护和管理的角度出发,对影响蓄电池寿命的因素进行了分析,对如何提高电池的使用寿命进行了讨论,并根据日常的一些维护经验,对蓄电池的维护提出了建议.
  关键词:阀控式密封铅酸蓄电池;使用寿命;温度补偿;维护管理
  
  一、蓄电池的使用寿命
  阀控式密封蓄电池以其体积小、防爆安全、电压稳定、无污染、重量轻、放电性能高、维护量小等特点,而成为通信电源系统的首选电池,蓄电池的寿命可分为循环寿命、浮充寿命和存放寿命。蓄电池的容量减小到规定值以前,蓄电池的充放电循环次数称为循环寿命。在正常工作条件下,蓄电池浮充供电的时间,称为浮充寿命。通常免维护电池的浮充寿命可达到10年以上。
  二、影响蓄电池寿命的因素
  目前,阀控密封铅酸蓄电池使用较多的是2V系列和12V系列。这两种电池的寿命差别较大,一般2V系列的设计寿命是8~10年,12V系列的设计寿命是3~6年。考虑到价格因素,目前在通信系统中对UPS一般配置的是12V系列的电池,对高频开关电源一般配置的是2V系列的电池。在对电源系统可靠性要求较高的场合,一般采用两组蓄电池并联运行、浮充供电的方式,一般蓄电池制造商提供的蓄电池设计寿命为特定环境下的理论值,实际使用寿命与电池室的环境温度、整流器的参数设置、日常维护以及运行状况有很大关系。
  1、环境的影响
  1.1 环境温度的影响
  环境温度对蓄电池使用寿命的影响很大。环境温度的升高,将加速电池板栅的腐蚀和增加电池中水分的损失,从而使电池寿命大大缩短。一般情况下,温度每升高10℃,电池使用寿命将减少50%,温度越高影响越大。在通信设备用阀控密封铅酸蓄电池行业标准YD/T799-2002中规定,高温加速浮充寿命试验是以环境温度55℃下42天的一个充放电试验折合一年的正常使用寿命,由此可见高温对电池寿命的影响。蓄电池的最佳使用环境温度为20~25℃。
  1.2充电不足
  在正常条件下,电池在放电时形成硫酸铅结晶,在充电时能较容易地还原为铅。如果使用不当,例如长期处于充电不足的状态,负极就会逐渐形成一种粗大坚硬的硫酸铅,它几乎不溶解,用常规方法很难使它转化为活性物质,从而减少了电池容量,甚至成为电池寿命终止的原因,这种现象称为极板的不可逆硫酸盐化。
  1.3过度充电
  蓄电池在长期过充电状态下,正极因析氧反应,水被消耗,氢离子浓度增加,导致正极附近酸度增加,板栅腐蚀加速,使电池容量降低。同时,因水损耗加剧,使蓄电池有干涸的危险,从而影响电池寿命。
  1.4 过放电
  电池的过放电主要发生在交流电源停电后,蓄电池长时间为负载供电。当蓄电池被过度放电到终止电压或更低时(源于电源本身对电池放电终止电压设置不准,或有的根本没有过放电保护装置),导致电池内部有大量的硫酸铅被吸附到蓄电池的阴极表面,硫酸铅是一种绝缘体,必将对蓄电池的充放电性能产生很大的负面影响,因此,在阴极上形成的硫酸铅越多,蓄电池的内阻越大,蓄电池的充放电性能越差,使用寿命就越短。一次深度的过放电可能会使电池的使用寿命减少1~2年,甚至造成电池的报废。
  1.5长期处于浮充状态
  蓄电池在长期浮充状态下,只充电而不放电,其对电池的影响与过度充电相同。
  2、均浮充控制
  决定电池寿命的要素有三个:第一是产品质量;第二是维护的情况;第三是决定电池是否处于良好的浮充运行状态。当交流电正常供应时,负载电流由交流电经整流后直接供电于负载,蓄电池处于微电流(补充其自放电所耗电能)充电状态;当交流电停供时才由蓄电池单独供电于负载,故蓄电池经常处于充足状态,大大减少了充放电循环周期,可延长了电池寿命。
  2.1关于浮充电压的选择
  蓄电池浮充电压的选择是对电池维护得好坏的关键。如果选择得太高,会使浮充电流太大,不仅增加能耗,对于密封电池来说,还会因剧烈分解出氢氧气体而使电池爆炸。如果选择太低,则会使电池经常充电不足而导致电池加速报废。
  2.2低电压恒压充电(均衡充电)技术
  所谓低压恒压充电,即过去传统的恒压充电法,但其不同点是,低电压恒压充电一般采用每只蓄电池平均端电压为2.25~2.35V的恒定电压充电。当蓄电池放出很大容量(A•h)而电势较低时,充电之初为防止充电电流过大,充电整流器应具有限流特性,故仍处于恒流充电状态。当充入一定容量(A•h)后,蓄电池电势升高,充电电流才逐渐减小。这种充电方式由于有以下优点而被推广使用。
  充电末期的充电电流很小,故氢气和氧气和产生量极小。它能改善劳动条件、降低机房标准,是全密闭电池适用的充电方式;充电末期的电压低,对程控电源等允许用电压变化范围较宽的用电设备供电时,可在不脱离负载的情况下进行正常充电,以简化操作,提高可靠性;整流器的输出电压最大值较小,可减小整流器中变压器的设计重量。
  2.3蓄电池浮充电压与温度的关系
  应注意的是,在浮充运行中,阀控电池的浮充电压与温度有密切的关系,浮充电压应根据环境温度的高低作适当修正。在浅度放电的情况下,阀控电池在2.27V/C(25℃)下运行一段时间是能够补充足其能量的;在深度放电的情况下,阀控电池充电电压可设定为2.35~2.40V/C(25℃),限流点设定为0.1Q,经过一定时间(放电后的电池充足电所需的时间依赖于放出的电量,放电电流等因素)的补充容量后,再转入正常的浮充运行。
  为了弥补运行中因浮充充电流调整不当造成的欠压,补偿阀控蓄电池放电和爬电漏电所造成蓄电池容量的亏损,应2-3个月对电池进行一次补充充电。
  3、 温度补偿
  在一些比较偏僻的通信站点,由于很少配有空调,环境温度变化较大,这对电池内部的化学反应速度有很大的影响。通常,电池静置时要求环境温度为0~40℃,温度太高将会使得电池的自放电加剧。而电池在使用时对环境温度的要求更苛刻,通常要求为20~25℃。在这种条件下,电池性能最佳,寿命最长。低温会使得电池容量降低,充电接收能力下降,充放电循环寿命下降;高温会使得Pb+2H2O→PbO2+4H++4e-反应加剧,导致失水,板栅腐蚀增加。因此,通信电源监控设备上应有“电池过温告警”的设置,一旦电池温度过高,系统就会发出告警。当电池不是工作在电池厂家推荐的最佳温度下时,电池的充电电压应进行调整。温度越高,充电电压越低,称为“温度补偿”。组合电源的监控设备通过“温度补偿系数”这项参数来对充电电压进行调整,电压调整值为
  ΔV=-温度补偿系数(mV/℃)×(电池温度-基准温度)×N(1)
  式中:基准温度通常是20℃或者25℃;
  N为电池组内电池节数,通常为24或12。
  由于各种电池采用的工艺和材料不同,实际应用中的温度补偿系数应根据电池厂家给出的数据进行调整。
  通信电源的温度补偿功能就是要将温度对电池的影响减至最小,但绝不是说有了对充电电压的温度补偿,电池就可以在任意环境温度下使用。要知道,温度低时,由于浮充电压增大,同样会引起浮充电流增大,板栅腐蚀加速等一系列的问题;而温度高时,浮充电压减小,也会形成电池充电不足等一系列问题。
  三、蓄电池的维护管理
  1、蓄电池组的充放电维护

  常用的正常充电法有:恒流充电法、恒压充电法和分级定流充电法等。
  采用恒流充电法时,充电电流始终保持不变。在充电过程中,蓄电池的端电压逐渐升高,为了保持充电电流稳定不变,外电源的电压必须逐渐升高。采用这种方法,充电时间较短,但是由于充电末期,大部分充电电流都用来电解水,所以蓄电池中将产生大量的气泡。这样不仅浪费了电能,而且还会使极板上的活性物质脱落,因此这种方法较少采用。
  采用恒压充电法时,外电源的电压保持恒定。在整个充电过程中,由于电源电压保持不变,所以刚充电时,充电电流相当大,随着蓄电池端电压不断升高,充电电流逐渐减小。因此,采用这种充电方法时,可以避免蓄电池过量充电,但是由于充电初期,充电电流过大,所以也有可能损坏极板。
  目前比较常用的正常充电法是分级定流充电法。采用这种充电法时,充电过程一般分为两个阶段:第一个阶段用10小时率电流充电,通常需要6-7小时,单只蓄电池的端电压可上升到2.4V。第二阶段用20小时率电流充电,直到端电压(2.6-2.8V)连续两小时稳定不变为止,这一阶段约需要14-17小时。
  2、放电试验
  交流供电正常的交换局内的通信电源所配置的蓄电池,应周期性地进行核对性的放电试验。对于开关电源所配置的2V电池,建议每年做一次,放出额定容量的30%~40%;对于UPS所配置的12V电池,建议每季度或半年做一次,放出额定容量的30%~40%;记录电池单体电压和电池组总电压,及时更换故障电池。
  3、 容量测试
  对于2V电池,每三年应进行一次容量测试放电,放出额定容量的80%;对于12V电池应每年进行一次容量测试放电,放出额定容量的80%。详细记录放电过程中各单体电压和电池组总电压,进行分析,及时更换容量较差的单体电池。
  4、 放电前的准备工作
  放电前,先检查整组电池是否拧紧,再根据放电倍率来确定放电记录的时间间隔。在对一组电池放电前,应先保证另一组电池充好电。放电过程中要密切注意比较落后的电池,以防止某个单体电池的过放电。并将此次记录与前次记录进行比较,对整组电池的运行状态做到心中有数。
  
  参考文献:
  陈振华 《现代通信电源运行维护与集中监控实用全书》
  北京科大电子出版社 2004年
  作者简介:姜仙锋(1981年7月)、男、民族:汉 籍贯(温岭)
  现供职单位:浙江省邮电工程建设有限公司
  职称:助理工程师 ,学位:学士学位,研究方向:通信电源


转载注明来源:https://www.xzbu.com/2/view-363133.htm