您好, 访客   登录/注册

高墩大跨连续刚构桥动力特性分析

来源:用户上传      作者: 余 跃

  摘 要:本文运用桥梁结构动力学与车辆动力学的研究方法,建立车桥时变系统空间振动方程。对某高墩大跨连续刚构桥进行了列车走行性分析,得出在列车作用下的车桥动力响应的理论计算结果,表明该桥具有足够的横竖向刚度,能够保障列车行车的走行安全性与乘坐舒适性的要求。同时根据计算结果可以得出在高墩大跨预应力混凝土连续刚构桥中,边墩或边跨出现最大响应的可能性非常大,因此在高墩大跨预应力混凝土连续刚构桥设计中对边墩的考虑应予以足够重视。
  
  关键词:动力学; 走行性分析; 走行安全性; 乘坐舒适性
  中图分类号:U448.21+5
  文献标识码:B
  文章编号:1008-0422(2009)07-0191-03
  
  1工程概况
  
  本论文以某高墩大跨预应力混凝土连续-刚构组合梁桥为研究对象。该桥主桥为72m+3×128m+72m预应力混凝土刚构-连续梁组合体系,梁体为单箱单室变高度、变截面箱梁,梁高4.4~8.8m,梁体下缘除中跨中部34m和边跨端部各25.7m为4.4m等高直线段外,其余为圆曲线,箱梁顶板宽8.1m,箱宽6.1m 。该桥主墩采用钢筋混凝土横向圆弧端形空心墩,在底部设置5m高的实体段。墩身顶部外壁顺桥向宽8m,采用1:0直坡。横桥向宽7.1m,外边坡:8#墩除墩顶9.172m内为直坡外,其余坡度为20:1,9#~11#采用双坡,梁底以下70m坡度为20:1,70m以下坡度为5:1,墩顶纵向壁厚为1.1m,内边坡为1:0直坡横向壁厚为1.2m,横向内边坡为60:1。墩的高度:H7=61 m,H8=70m,H9=94.5m,H10=107m,H11=103m,H12=51m。属于典型的高墩连续刚构桥。结构示意图见图1。
  
  2列车-桥梁时变系统空间振动分析模型
  
  2.1车辆(包括机车)空间振动分析模型
  机车、车辆空间振动分析中,假定车体空间振动有:侧摆、侧滚、摇头、点头、浮沉等5个自由度;每个构架有侧摆、侧滚、摇头、浮沉等4个自由度;每个轮对有侧摆,浮沉等2个自由度。每辆车(包括机车)共有21个自由度[2](见图2所示)。
  2.2 桥梁空间振动分析模型
  对主梁采用梁段有限元法建模,对桥墩采用空间梁元建模,桩基础采用刚度等效理论直接等效为墩底刚度,弹性模量E和泊桑比μ按现行桥规取值。桥梁有限单元划分示意图见图3。分析模型确定后,就可由动力学势能驻值原理及形成矩阵的“对号入座”法则,建立桥梁刚度、质量、阻尼等矩阵。
  
  3车桥时变系统空间振动方程的建立[4-6]
  
  将桥上列车与桥梁视为整体系统。考虑各车辆与桥梁空间振动位移的相互关系,计算任一时刻t的桥上列车及桥梁空间振动的弹性总势能。按弹性系统动力学总势能不变值原理及形成矩阵的“对号入座”法则,建立t时刻此系统空间振动的矩阵方程及荷载列阵{P},得出t时刻车桥系统空间振动的矩阵方程
  (1)
  方程(1)中荷载列阵{P}仅由列车重力构成,还不能根据它解出车桥系统的空间振动响应。必须以实测的构架蛇行波或构架人工蛇行波和轨道竖向几何不平顺函数代替矩阵方程(1)左边的对应振动参数,才能解出此系统在列车重力与列车走行共同作用下的空间振动响应。详细演引过程见文献[2]。
  
  4自振频率的计算
  
  桥梁的自振频率反映了桥梁的刚度及桥梁的动力特性,它对桥梁在动荷载作用下的动力响应有着根本的影响,是桥梁进行动力设计时必须考虑的重要参数。因此,正确计算桥梁的自振特性是解决桥梁横向刚度问题的关键之一,见表1。
  
  5列车走行性分析
  
  对旅客列车采用常规编组,即:对DF11旅客列车采用1辆DF11内燃机车牵引18辆准高速客车进行计算;对SS8旅客列车采用首尾各1辆SS8电力机车牵引12辆准高速客车进行计算;对货物列车而言,按至少布满中跨进行计算,本文暂取编组工况为1辆DF4内燃机车牵引20辆C62货车。线路不平顺当车速不超过140km/h即对C62货物列车和DF11旅客列车暂采用美国五级谱模拟轨道不平顺进行计算,当车速为160km/h以上即对SS8旅客列车暂采用郑武线实侧轨道不平顺进行计算,各类工况的车桥系统空间振动响应详细计算结果见表2~5,评价结果见表6。
  从计算结果可以看出:
  1)当货车以车速50~80km/h、DF11客车以车速80~140km/h、SS8客车以车速160~200km/h通过桥梁时,桥梁及列车的加速度响应均在容许值以内,列车行车的安全性指标(脱轨系数≤0.8,轮重减载率≤0.6)均满足要求,故列车行车的安全性有保证。
  2)当货车以车速50~80km/h通过桥梁时:机车司机台处横向、竖向舒适度指标均达到“良好”及以上标准。车辆竖向平稳性指标均达到“良好”及以上标准;车辆横向平稳性指标均达到“良好”及以上标准。
  3)当DF11客车以车速80~140km/h通过桥梁时,机车司机台处横向、竖向舒适度指标均达到“良好”及以上标准,客车各车辆横向、竖向舒适度指标也均达到“良好”及以上标准。
  4)当SS8客车以车速160~200km/h通过桥梁时,机车司机台处横向、竖向舒适度指标均达到“良好”及以上标准,客车各车辆横向、竖向舒适度指标也均达到“良好”及以上标准。
  
  6结论
  
  6.1横桥向弯曲振动基频的计算值大于《铁道桥梁检定规范》对预应力钢筋混凝土简支梁横桥向基频f≥90/L=0.703IHz的规定;基本周期T满足铁道部建鉴(1992)93号文“关于南昆线四座大桥横向刚度的补充技术要求”关于基本周期T<1.7s的规定。
  2)列车行驶过桥时,桥梁的振幅和振动形式,与列车的编组状况及列车的行驶速度有关,具有较强的随机性,全桥横向振幅的计算结果最大值出现在边墩上。
  3)根据《铁道桥梁检定规范》(1978)对预应力钢筋混凝土梁跨中横桥向振幅Amax≤L/16.5的规定,对于128m跨跨中横桥向振幅Amax≥L/16.5=7.76mm的规定。
  4)通过计算结果可以看出,对高墩大跨预应力混凝土连续刚构桥而言,最大响应并不一定出现在最高墩处,也不一定出现在全桥跨中,而边墩或边跨出现最大响应的可能性非常大。因此,在高墩大跨预应力混凝土连续刚构桥设计中对边墩的考虑应予以足够重视。
  5)该桥对本文所分析的工况而言均具有足够的横、竖向刚度;列车行车的安全性与舒适性良好。
  
  参考文献:
  [1] 张师岸.李子沟特大桥施工阶段抗风设计[N]. 铁道标准设计,2003(7).
  [2] 曾庆元,郭向荣著.列车桥梁时变系统振动分析理论与应用[M].北京,中国铁道出版社,1999-08.
  [3] 曾庆元,杨平.形成矩阵的“对号入座”法则与桁段有限元法[N]. 铁道学报,1986(02).
  [4] J.M.Lipsius[德],施治才译:高速运行时UmAn型动轴转向架车轮动荷载的测量[N].
  [5] 鲍达尔Н.Г[苏].主编,胡人礼译.铁路桥梁与机车车辆的相互作用[N].铁道部专业设计院工程建设标准规范管理处,1987-06.
  [6] 曾庆元等5人.列车-桥梁时变系统横向振动分析[N]. 铁道学报,1991(02).


转载注明来源:https://www.xzbu.com/2/view-545718.htm