您好, 访客   登录/注册

地铁柔性接触网弓网故障探讨及防治对策

来源:用户上传      作者:

  摘要:随着人们对城市轨道交通运营的安全性和可靠性要求越来越高,减少或避免地铁柔性接触网弓网故障的是一项重要课题。作者根据多年接触网运行工作经验认为:只要在日常工作中对接触网关键部位技术参数根据实际情况,针对具体问题,合理安排并提出相应措施,即可有效减少弓网故障的发生。文章总结一些接触网故障实例,对弓网故障进行分析探讨,旨在提出防治对策。
  关键词:接触网弓网;故障;防治
  
  1.案发事故
   通过对国内地铁2004~2010年统计的发生接触网故障看,每年至少发生几次中断部分区段行车30分钟以上的故障,且存在恶化的迹象(见表1)。接触网故障发生会使地铁运营瘫痪,给城市交通带来很大的影响。
   表1国内地铁近期接触网故障情况统计表(不完全统计)
  
  
  2.事故主要原因分析
   据深圳地铁几年来柔性接触网故障统计分析,弓网故障肇事原因中接触网方面原因约占71%,中断供电时间则占80%,可见接触网方面的问题是造成弓网故障的主要原因。
  2.1接触网方面原因
   (1)接触网设计方面
   1)分段绝缘器的过渡性能差、重量大,难于调整,对受电弓的碰撞极为严重,造成滑板条被打断或使受电弓横杆抱箍相对转动,被损伤的受电弓往往在线岔处被彻底挂坏。如深圳地铁分段绝缘器消弧棒因拉弧后损坏脱落的现象(见图1)。原因为产品设计不合理,由于地铁接触网电流较大,而分段绝缘器的消弧棒与导流板之间采取点焊连接,车辆运行至分段处拉弧烧融焊点,加之受电弓通过时的机械震动,造成消弧棒脱落。
   2)绝缘锚段关节的过渡性能差也是众所周知的现实,有时出现火花和对受电弓的撞击损伤也是司空见惯,人们对其危害似乎已经麻木。受电弓中心部位滑板条的断裂,主要是三相绝缘锚段关节和分段绝缘器摩擦的结果(见图2)。
  
  
   图1接触网分段绝缘器导角拉弧后损坏脱落 图2受电弓碳条断裂并脱落
   3)补偿定滑轮的固定方式难以满足多种条件下的灵活自如。由于角度配置不能保证补偿绳处于同一铅垂面内,所以发生补偿绳从定滑轮上脱出,从而丧失补偿作用,直接影响锚支接触线的高度变化,甚至侵入受电弓工作范围招致弓网事故。如2007年12月2日,深圳地铁竹子林车辆段试车线西侧接触网下锚补偿绳因偏磨断线,导致坠陀落地接触网塌网。
   4)隧道内定位管与绝缘子采用螺纹连接,管子车丝后,不仅强度大为减弱,而且镀锌层也遭到破坏,连接处在锈蚀和振动的双重作用下,极易发生疲劳折断。这种连接方式又难以从外观检查出异常,所以隧道内定位管螺丝部分损坏造成的弓网事故也并不少见。
   (2)接触网零部件方面
   1)承力零部件制造质量低下,运行中发生断裂。例如南京地铁开通运营不到半年地铁接触网设备四起故障两起是因配件质量引起。深圳地铁2005年3月25日因渡线锚段无补偿下锚终端合成绝缘棒断裂导致接触网塌落。
   2)电连接设置数量或位置不合理,特别是在坡道上,机车取流过大造成吊弦过流被烧断。由于电连接与承力索接触不良,形成线夹内长期放电而造成烧断电连接线。吊弦线夹、电连接线夹紧固螺栓长期处于振动状态,由此造成螺栓松脱也是产生此类故障的原因之一。
   3)调整螺栓固定方式不合理,不锈钢线压接存在质量缺陷导致锚段关节导线烧伤。
   4)接触网下锚底座安装位置出现偏差,接触网坠砣及补偿绳顺线路方向不能垂直,导致下锚坠砣补偿绳严重磨棘轮。
  2.2线路及其维修工作中的不当行为
   1)受电弓与接地体放电故障。此类故障一般发生在受电弓对树木、受电弓对渗、漏水隧道内的冰柱放电,从而引起变电所跳闸。
   2)线路原因引起弓网故障。工务部门起拨道引起导线拉出值参数变化,特别是在曲线段外轨的超高值变化将引起接触导线相对位置较大的变化。从而引起受电弓脱弓、刮弓。
   3)接触网零部件脱落导致弓网事故突出。据某供电段近10年弓网事故统计表明,零部件脱落占供电责任弓网事故22.88%。零部件脱落主要表现为线岔限制管锈断,线夹破裂,吊弦线夹破损,吊弦烧断,定位线夹破损,中心锚结脱落,弹性吊弦抽脱,分段绝缘器零件松脱,补偿绳抽脱以及开口销锈蚀磨损导致其他零部件脱落等等。这些情况明确告诫我们,维修工作中认真检查零部件的状态是何等重要。
   3)安装调整不当。安装时补偿绳脱槽,坠砣卡滞,补偿失灵,下部定位绳下垂、拉出值计算和调整有误、非工作支抬高不足、零部件碰弓、线夹安装偏斜或夹持大面、分段和分相绝缘器调整不当等。
  3弓网事故防治对策
  3.1工程技术方面
   接触网弓网故障点多,但是最关键的部位仍旧是定位部分和道岔部位。
   (1)定期测量接触网定位点。
   1)检修作业中,测量工具的精确度,对接触网影响很大。如现在普遍使用的接触导线高度测量杆测量时,受到风力、温度、接触悬挂的晃动及作业人员技术水平等多方面的因素影响,造成测量数据不准确。因此测量工具的改进应是运营检修单位首要考虑的因素。2)关于接触网重要参数即接触导线的拉出值,在直线处调为±200 mm。随着机车运行速度的不断提高,受电弓的晃动也随之更加剧烈,因此有必要将传统的±300 mm减小100 mm。曲线处拉出值的设计一般为150 mm至400 mm,但我们在曲线半径为350 mm的曲线施工时发现,跨距为35 m,设计拉出值为400 mm,实测值也为400 mm,机车通过跨中时接触导线拉出值不足50 mm。为了增加运行的可靠性,同时减少在曲线处对受电弓的偏磨现象,对于此类问题,建议将两定位点及跨中的拉出值均匀布置。不同曲线半径处的拉出值能否降低100 mm?通过计算,得出以下结论,见表1。
  表1:不同曲线半径处的拉出值计算结果
  
  
  (注:表1跨中偏差数值为:跨距两侧拉出值均为零时的数据)
   通过表1的比较,将设计参考值(设计图纸给定的拉出值)降低100 mm之内完全可行。这样将加大施工、检修工艺中的偏差数值,提高接触悬挂的可靠性。4)定位坡度调整应考虑接近上限,即1∶10的坡度。考虑到机车受电弓对接触导线的垂直抬升力,因此定位坡度可在允许范围内适度放大。
   (2)防止道岔区刮弓、钻弓故障
   1)线岔处两接触线的连线、各部参数都于线路两轨连线平行与否紧密相连,如果两轨连线不水平,而检修一般使用的工具是水平尺加钢尺,一旦施工误差累加轨面不水平因素,势必会造成过大偏差,线岔处的参数就会因两轨不水平而大大偏移。轻则引起受电弓碰导角,重则造成钻弓事故。因此检调线岔时,必须先核对始触点范围内两股道的轨面连线是否水平。2)线岔处始触点的确定。传统教材等专业书籍中提出道岔500 mm处等高,但此始触点偏移较大,因此,调整时往往忽略500 mm之外的情况。通过电脑模拟计算得知:18号道岔的始触点在两导线间距334 mm处,12号道岔的始触点在两导线间距311mm处,9号道岔的始触点在两导线间距283 mm处。参数条件如下:标准定位,相邻跨距拉出值均为;直股300 mm,曲股400 mm,受电弓宽度1 250 mm;列车直股通过。电脑模拟得出如下数据:列车曲股通过时,始触点略大一些。由此可以看出两导线间距279 mm~334 mm的范围内属于受电弓理论上刮、打、碰区域。因此,建议在270 mm至500 mm间着重测量检修,保证两导线连线与两轨连线平行。

   (3)防止吊弦、电连接线烧断缠绕受电弓故障
   1)采用绝缘吊弦,防止吊弦过流。在其它电气化铁路接触网工程中就采用过这种吊弦。现行的环节吊弦、整体吊弦加一绝缘套即可实现。2)增加电连接的数量。在大取流区段,特别是在坡度较大的区段,减小横向电连接之间的距离。例如包兰线迎水桥至干塘段就出现过在大坡道上按规定数量设置横向电连接而烧断吊弦的事故,增设了横向电连接后,此类故障排除。3)定期更换电连接。考虑运营单位天窗点的合理利用,可将拆下的电连接线及电连接线夹除去氧化膜后,整备下一个更换周期或下一个工作日再行利用。这样可以及早发现电连接线夹内的放电故障。同时电连接线连接处应涂高滴点通用导电膏,提高连接处的紧密程度。
   (4)防止接触网材质不良引起的连接、定位零件断裂而造成的弓网故障
   1)加强材料质量的检验手段,杜绝不合格材料,进入作业现场。2)加强曲线区段接触悬挂的巡视检查,对小曲线半径区段的连接、定位材料做专门的检查。反定位加装防风支撑,防止因“V”型拉线吊弦线夹断裂而发生打击受电弓现象。
  3.2工程管理方面
   (1)提高工作人员技术管理水平
   由于接触网恶劣的运行环境,这就给工作人员提出了很高的要求,工作人员必须做到以下几点:
   1)负责技术、安全、教育的维修管理者必须认真掌握接触网设备的安全关键。2)对弓网故障的分析只坚持一个标准――实事求是。3)定期进行接触网弓网事故的演练,提高接触网工作人员的弓网事故应急处理能力。
   (2)建立专业设计队伍和生产厂家
   在总的弓网事故中,因接触网零部件质量问题导致弓网事故占有相当的比例。目前,我国正在走接触网设备国产化的道路,但由于起步晚、经验不足,导致一些国产零部件存在工艺粗糙,体积大,质量低等问题。因此,建立专业化接触网零部件设计队伍和专业化接触网零部件制造厂家,改变目前接触网零部件生产混乱的局面,建立权威的接触网零部件检测中心,完善检测手段和标准,是确保的有效途径。
   (3)加强对受电弓的研制与改进
   随着深圳地铁事业的发展,车辆的种类将越来越多。电弓的研制工作将越来越引起设计和研制部门的关注。如在受电弓上安装弓网动态超限自动检测装置,在发生弓网故障时, 装置能自动切断机车主断路器,使受电弓滑板迅速脱离接触导线,实现快速自动降弓,避免拉网、受电弓损坏和由此引起的长时间运营中断。
  4结束语
   电气化铁路在世界上的发展已有一百多年的历史,它以其显著的技术和经济上的优越性得到大力发展。链形悬挂方式的柔性接触网在目前仍然占居主要地位,如何有效控制接触网弓网故障,仍旧是一个长期的课题。以上阐述只是在地铁柔性接触网运行工作中总结出的一些适合检修实际的粗浅看法,难免有不妥之处,恳请同行不吝指正,有待于进一步总结和完善。
  
  参考文献
  [1]安孝廉. 我国电气化铁路弓网故障及对策综论[J]. 机车电传动, 1995,(06)
  [2]吴良治, 张锡昆. 浅议弓网故障的成因及预防[J]. 铁道机车车辆, 1994,(04)
  [3]胡光能. 防止弓网故障的措施[J]. 电力机车技术, 1999,(01)
  [4]闫祖顺. 反定位附近的接触网-受电弓故障分析[J]. 电气化铁道, 2002,(03)
  [5]李健. 接触网拉出值选用对弓网运行关系的改善[J]. 电气化铁道, 2005,(06)
  [6]吴锦青. 提高接触网的安全可靠性[J]. 电气化铁道, 1994,(03)
  
  注:文章内的图表、公式请到PDF格式下查看


转载注明来源:https://www.xzbu.com/2/view-604280.htm