您好, 访客   登录/注册

国产结构用铝合金断裂韧性参数校准

来源:用户上传      作者:

   摘   要:为了将空穴增长模型(VGM)和应力修正临界应变模型(SMCS)应用于国产结构用铝合金的韧性断裂预测,完成了国产6061-T6、6082-T6和7020-T6 3种牌号的铝合金标准圆棒试件和缺口圆棒试件的单轴拉伸试验,并结合有限元分析,校准了3种牌号铝合金的VGM和SMCS模型断裂韧性参数. 研究结果表明:槽口半径大小对各牌号铝合金试件的断裂韧性参数校准值影响较小,离散系数均在20%以内;断裂韧性参数是铝合金材料固有属性,可用于国产结构用铝合金在不同应力状态下的韧性断裂预测;与SMCS模型相比,VGM模型能够更为精确地预测铝合金材料的韧性断裂.
   关键词:铝合金;韧性断裂;VGM模型;SMCS模型;韧性参数校准
   中图分类号:TU395                             文献标志码:A
   Abstract:In order to apply the Void Growth Model (VGM) and Stress Modified Critical Strain model (SMCS) to predict the ductile fracture of Chinese structural aluminum alloys, uniaxial tensile tests on aluminum alloy 6061-T6, 6082-T6 and 7020-T6 were carried out, including smooth round bar specimens and notched round bar specimens. Besides, finite element analyses were conducted to calibrate the toughness parameters of three brands of aluminum alloys. The results show that the radius of the notch has slight influence on the toughness parameters of aluminum alloys, and the dispersion coefficients are all within 20%. It is indicated that the toughness parameter is an inherent attribute of the aluminum alloy material, and it can be used to predict the ductile fracture of Chinese structural aluminum alloys under various stress states. Compared with the SMCS model, the VGM model can predict the ductile fracture of aluminum alloys more accurately.
   Keywords:aluminum alloy;ductile fracture;VGM model;SMCS model;toughness parameter calibration
   铝合金材料具有轻质高强、可模性好、延展性好、耐腐蚀性好等优点,被越来越广泛地应用于现代结构工程领域,尤其是大跨度空间结构领域[1-2]. 断裂破坏是铝合金结构的一种主要失效模式,节点或构件的断裂失效可能导致结构发生整体倒塌[3],因此,有必要对结构用铝合金的断裂行为进行深入研究.
   铝合金的断裂行为属于典型的韧性断裂. 金属材料的韧性断裂理论从裂纹产生和发展的微观机制出发,可以较为准确地描述材料的宏观断裂行为,具有良好的适用性. 单调荷载作用下,应用较为广泛的断裂預测模型主要有Kanvinde等[4]提出的空穴增长模型(Void Growth Model,简称VGM)以及Hancock等[5]提出的应力修正临界应变模型(Stress Modified Critical Strain model,简称SMCS). 基于上述模型,国内外学者对建筑钢材的断裂行为进行了广泛研究[6-15],结果表明,单调荷载作用下,VGM和SMCS模型可以准确预测钢材的韧性断裂,并可应用于钢结构节点的断裂预测. VGM和SMCS模型在钢结构中的应用已较为成熟,而对于国内建筑结构常用的铝合金材料,其研究应用却几乎为空白. 铝合金与钢材相比,材料微观结构有所不同,其延性较差,韧性断裂行为可能会存在一定差别. 上述断裂预测模型能否有效应用于铝合金结构,还需进一步通过试验验证.
   基于以上研究不足,本文选取国产6061-T6、6082-T6和7020-T6牌号的铝合金,加工了9个标准圆棒试件和18个缺口圆棒试件进行单轴拉伸试验,并结合有限元软件ABAQUS进行数值模拟,校准了不同牌号铝合金的VGM和SMCS模型韧性参数.
  1   金属材料韧性断裂预测模型
   Rice等[16]首先推导了单个圆柱形或球形空穴在理想弹塑性材料中的空穴增长公式,指出空穴半径增长率与应力三轴度和塑性应变有关. 其表达式如下:
  
  式中:α为材料韧性参数,含义与VGM模型中的η类似;IF,SMCS为断裂指标,当金属材料在荷载作用下的等效塑性应变达到临界等效塑性应变,即断裂指标IF,SMCS≥0时,材料点发生启裂.
   SMCS模型忽略了应力三轴度随等效塑性应变的变化,临界塑性应变取决于启裂时应力三轴度的值,而没考虑加载历史的影响. 因此,与VGM模型相比,SMCS模型计算精度稍差,不适用于材料塑性变形较大(即应力三轴度变化较为剧烈)的情况. 但在工程应用中,SMCS模型不需要积分,计算简便快捷,并且与试验结果吻合较好.   2   试验方案
   为了研究VGM和SMCS模型用于国产结构用铝合金断裂预测的可行性,本文首先进行标准圆棒的单轴拉伸试验,以便在进行有限元模拟时,确定试验材料的弹性模量和真实应力应变曲线等基本材料参数,使有限元结果与试验结果更加吻合.
   试验材料采用国产6061-T6、6082-T6和7020-T6牌号的铝合金,每种牌号的标准圆棒试件各加工3件,共计9件;缺口圆棒试件选用3种不同的缺口半径,即R分别为1.25 mm、2.5 mm和5 mm,以在缺口处构造不同的应力三轴度. 每种形式的缺口试件加工2件,共计18件. 试件尺寸如图1所示,试件编号见表1.
   单轴拉伸试验在同济大学航空航天力学实验室进行,加载装置为30 t的微机控制电液伺服万能试验机SHT4305,引伸计标距为50 mm,量程为40%. 试验加载方式为位移加载,加载速率为0.5 mm/min. 试验装置见图2.
  3   单轴拉伸试验结果
  3.1   标准圆棒试件试验结果
   不同牌号铝合金标准圆棒试件的破坏形态如图3所示. 可以看出,6061-T6铝合金试件断口颈缩明显,呈现典型的杯锥形,试件表面出现与加载轴线呈45°的剪切唇,为延性断裂;6082-T6试件延性次之,断口处略有颈缩;而7020-T6试件延性最差,肉眼观察不到颈缩现象,断口晶粒明显,并且试验中试件断裂时伴有明显响声,为脆性断裂. 单轴拉伸试件的名义应力-应变曲线见图4,相应的主要力学性能指标列于表2,包括弹性模量E、名义屈服强度f0.2、抗拉强度fu、断裂荷载Pf、标距段初始直径d0、断后直径df、断面收缩率ψ和断裂应变εf . 其中,断裂应力σf采用MWA法[17]计算得到,其数据列于表3. 由于每种牌号铝合金的3个标准拉伸试件的名义应力-应变关系曲线在颈缩阶段前几乎相同,为了便于与后文试验曲线拟合结果对比,对每个牌号图4仅给出了1条实测曲线.
   图10所示为不同缺口试件达到δf时,等效塑性应变和应力三轴度沿截面直径的分布. 随着试件缺口半径增大,启裂时等效塑性应变增大,应力三轴度减小. 等效塑性应变变化幅度明显小于应力三轴度. 启裂点位置主要由应力三轴度控制,而截面中心点应力三轴度最大,故可判断为启裂点. 图11给出了启裂点处应力三轴度随等效塑性应变变化的关系曲线,可以看出,应力三轴度随等效塑性应变增加而缓慢增大,但变化范围不大,说明SMCS模型假定的合理性.
   韧性参数η和α计算结果见表5. 表中,Mises等效应力σe、静水应力σm、应力三轴度T及等效塑性应变εp,cr均为对应于试件启裂时的应力、应变值. 由表5可知,同种牌号铝合金试件的韧性参数η和α的校准值较为一致. 6082-T6铝合金韧性参数的离散性较小,离散系数在10%以内;对于6061-T6和7020-T6铝合金,由于缺口半径为5 mm的试件韧性参数明显高于另外2种类型缺口试件,导致韧性参数离散性较大,这可能是由于VGM和SMCS模型并不能完全精确地预测铝合金的韧性断裂. 各种牌号铝合金SMCS模型韧性参数均略高于VGM模型,是因为在加载过程中,启裂点应力三轴度随等效塑性应变呈增大趋势(图11).
   总体来说,各种牌号试件韧性参数的离散系数均在20%以内,表明韧性参数是铝合金材料固有属性,可用于试件在不同应力状态下的韧性断裂预测. 不同牌号铝合金韧性参数相对大小关系为:6061-T6的韧性参数最大,6082-T6次之,7020-T6最小.
   图12所示为3种牌号铝合金塑性指标断面收缩率与微观模型韧性参数η和α的关系. 从图中可以看出,韧性参数与塑性指标基本呈线性相关,材料塑性越好,韧性参数越大,这与文献[11-12]有相似结论. 线性回归与实测数据之间的相关系数r均大于0.97,拟合效果良好.
  4.2   断裂过程模拟分析
   将4.1节得到VGM和SMCS模型韧性参数η和α写入VUMAT子程序,并嵌入ABAQUS软件,可以得到试件断裂的全过程结果. 图13和14所示为典型试件在变形过程中的应力云图. 从图中可以看出,试件在变形为0.49 mm时于中心点启裂,随着变形增加,裂缝向截面边缘扩展,试件模拟断裂形态与试验断裂形态(图6(b))较为吻合. 以VGM模型为断裂判据时,断口区域单元删除更加整齐. 图15所示为有限元与试验中典型试件裂后荷载位移曲线的对比. 由于VGM和SMCS模型假定断裂指标达到零时,材料单元失效,并未考虑材料损伤,而实际材料是经过损伤发展失效,因此采用上述2种断裂模型得到的荷载位移曲线达到启裂点后急剧下降. 综合图13~图15分析,VGM模型能够更好地模拟试件断口形貌以及裂后路径.
  5   结 论
   1)通过缺口圆棒试验结合有限元分析,校準了国产6061-T6、6082-T6和7020-T6牌号铝合金的韧性参数,有限元分析结果和试验结果吻合良好,且有限元分析表明,试件于断口截面中心点处启裂,与试验现象一致.
   2)6082-T6铝合金韧性参数的离散系数为5%~9%,6061-T6和7072-T6铝合金韧性参数离散系数为12%~19%. 3种牌号铝合金韧性参数离散系数均在20%以内,验证了韧性参数是铝合金的固有属性,可采用VGM和SMCS模型进行国产结构用铝合金的韧性断裂预测.
   3)有限元分析表明,加载过程中启裂点应力三轴度随等效塑性应变呈逐渐增大趋势,这导致计算出的SMCS模型韧性参数稍大于VGM模型.
   4)VGM和SMCS模型韧性参数与铝合金材料塑性指标断面收缩率基本呈线性相关,且相关系数均大于0.97. 为方便应用断裂预测模型,可根据铝合金标准圆棒断面收缩率快捷地计算出韧性参数.    5)VGM和SMCS模型能够较好地预测国产结构用铝合金材料的韧性断裂,并且VGM模型具有更高的精度.
  参考文献
  [1]    沈祖炎,郭小农,李元齐. 铝合金结构研究现状简述[J]. 建筑结构学报,2007,28 (6):100—109.
  SHEN Z Y,GUO X N,LI Y Q. State-of-the-arts of research on aluminum alloy structures [J]. Journal of Building Structures,2007,28 (6):100—109. (In Chinese)
  [2]     杨联萍,韦申,张其林. 铝合金空间网格结构研究现状及关键问题 [J]. 建筑结构学报,2013,34(2):1—19,60.
  YANG L P,WEI S,ZHANG Q L. Aluminum reticulated spatial structures:state of the art and key issues [J]. Journal of Building Structures,2013,34(2):1—19,60. (In Chinese)
  [3]     郭小农,邹家敏,刘林林,等. 两种结构用铝合金循环加载试验研究[J].湖南大学学报(自然科学版),2018,45(9):57—64.
  GUO X N,ZOU J M,LIU L L,et al. Cyclic loading tests of two types of structural aluminum alloy [J]. Journal of Hunan University (Natural Sciences),2018,45(9):57—64. (In Chinese)
  [4]     KANVINDE A M,DEIERLEIN G G. Void growth model and stress modified critical strain model to predict ductile fracture in structural steels [J]. Journal of Structural Engineering,2006,132(12):1907—1918.
  [5]     HANCOCK J W,MACKENZIE A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states [J]. Journal of the Mechanics & Physics of Solids,1976,24(2):147—160.
  [6]     KANVINDE A M,DEIERLEIN G G. Prediction of ductile fracture in steel moment connections during earthquakes using micromechanical fracture models [C]//13th World Conference on Earthquake Engineering. VANCOUVER B C. Canada:WCEE,2004:297.
  [7]     KANVINDE A M,DEIERLEIN G G. Finite-element simulation of ductile fracture in reduced section pull-plates using micromechanics-based fracture models [J]. Journal of Structural Engineering,2007,133(5):656—664.
  [8]     MYERS A T,KANVINDE A M,DEIERLEIN G G. Calibration of the SMCS criterion for ductile fracture in steels:Specimen size dependence and parameter assessment [J]. Journal of Engineering Mechanics,2010,136(11):1401—1410.
  [9]     WANG Y Q,ZHOU H,SHI Y J,et al. Fracture prediction of welded steel connections using traditional fracture mechanics and calibrated micromechanics based models [J]. International Journal of Steel Structures,2011,11(3):351—366.
  [10]   邢佶慧,郭長岚,张沛,等. Q235B钢材的微观损伤模型韧性参数校正 [J]. 建筑材料学报,2015,18(2):228—236.
  XING J H,GUO C L,ZHANG P,et al. Calibrations of toughness parameters of microscopic damage model for steel Q235B [J]. Journal of Building Materials,2015,18(2):228—236.(In Chinese)   [11]   刘希月,王元清,石永久. 基于微观机理的高强度钢材及其焊缝断裂预测模型研究 [J]. 建筑结构学报,2016,37(6):228—235.
  LIU X Y,WANG Y Q,SHI Y J. Micromechanical fracture prediction model of high strength steel and its weld [J]. Journal of Building Structures,2016,37(6):228—235. (In Chinese)
  [12]   廖芳芳,王睿智,李文超,等. Q460钢基于微观机制的延性断裂判据研究 [J]. 西安建筑科技大学学报(自然科学版),2016,48(4):535—543,550.
  LIAO F F,WANG R Z,LI W C,et al. Study on micro mechanism-based ductile  fracture criteria for Q460 steel [J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition),2016,48(4):535—543,550. (In Chinese)
  [13]   王元清,关阳,刘明,等. 建筑钢材微观损伤模型的韧性参数校正 [J]. 天津大学学报(自然科学与工程技术版),2018,51(S1):1—9.
  WANG Y Q,GUAN Y,LIU M,et al. Toughness parameter correction of microstructure damage model of building steel [J]. Journal of Tianjin University (Science and Technology),2018,51(S1):1—9. (In Chinese)
  [14]   王伟,廖芳芳,陈以一. 基于微观机制的钢结构节点延性断裂预测与裂后路径分析 [J]. 工程力学,2014,31(3):101—108,115.
  WANG W,LIAO F F,CHEN Y Y. Ductile fracture prediction and post-fracture path [J]. Engineering Mechanics,2014,31(3):101—108,115. (In Chinese)
  [15]   施刚,陳玉峰. 基于微观机理的Q460钢材角焊缝搭接接头延性断裂研究 [J]. 工程力学,2017,34(4):13—21.
  SHI G,CHEN Y F. Investigation on the ductile fracture behavior of Q460 steel fillet welded joints based on micro-mechanics [J]. Engineering Mechanics,2017 ,34(4):13—21. (In Chinese)
  [16]   RICE J R,TRACEY D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids,1969,17(3):201—217.
  [17]   JIA L J,KUWAMURA H. Ductile fracture simulation of structural steels under monotonic tension [J]. Journal of Structural Engineering,2014,140(5):04013115.
  [18]   RAMBERG W,OSGOOD W R. Description of stress-strain curves by three parameters[R]. Washington D C:University of Washington. National Advisory Committee for Aeronautics,1943:56—58.
  [19]   王丽,郭小农,刘林林,等. 国产铝合金材料滞回本构模型研究[J]. 湖南大学学报(自然科学版),2018,45(11):29—36.
  WANG L,GUO X N,LIU L L,et al. Study on hysteretic constitutive model of domestic aluminum alloy [J]. Journal of Hunan University (Natural Sciences),2018,45(11):29—36. (In Chinese)
  [20]   石亦平,周玉蓉. ABAQUS有限元分析实例详解 [M]. 北京:机械工业出版社,2006:166—167.
  SHI Y P,ZHOU Y R. Finite element analysis and example explanation of ABAQUS [M]. Beijing:China Machine Press,2006:166—167. (In Chinese)
转载注明来源:https://www.xzbu.com/4/view-15233277.htm