您好, 访客   登录/注册

车联网环境下基于节点认知交互的路由算法

来源:用户上传      作者:

  摘 要:针对车联網(IoV)环境下消息传输效率低下、网络资源开销较大等诸多问题,提出一种适用于城市交通场景下基于车辆节点认知交互的路由算法。首先,依据信任理论提出节点认知交互度的概念,并在此基础上对车联网中的车辆节点进行分类,赋予它们不同的认知交互度初值;同时还引入车辆节点交互时间、交互频率、车辆节点物理间隔距离、间隔跳数以及消息生存时间等影响因子,进而构建了车辆节点认知交互评估模型。基于该模型计算并更新节点的认知交互度,并通过比较对应车辆节点间的认知交互度值来选取认知交互度相对较高的邻居节点作为中继节点进行消息转发。仿真实验结果表明,与Epidemic和Prophet路由算法相比,所提路由算法有效提高了消息投递率并降低了消息投递时延,同时显著降低了网络资源的开销,有助于提升车联网环境的消息传输质量。
  关键词:车联网;延迟容忍网络;路由算法;消息转发
  中图分类号: U491
  文献标志码:A
  Abstract: In order to solve the problems such as low transmission efficiency and high network resource overhead in Internet of Vehicles (IoV) environment, a new routing algorithm based on node cognitive interaction, which is suitable for urban traffic environment, was proposed. Firstly, based on trust theory, a concept of cognitive interaction degree was proposed. Then, based on this, the vehicle nodes in IoV were classified and given with different initial values of cognitive interaction degree. Meanwhile, the influence factors such as interaction time, interaction frequency, physical distance, hops between nodes and the Time-To-Live of message were introduced, and a cognitive interaction evaluation model of vehicle nodes was constructed. The cognitive interaction degrees of vehicle nodes were calculated and updated by using the proposed model, and a neighbor node with higher cognitive interaction degree than others could be selected as relay node to forward the messages after the comparison between the nodes. Simulation results show that compared with Epidemic and Prophet routing algorithms, the proposed algorithm effectively increases the message delivery rate and reduces the message delivery delay, while significantly reducing the overhead of network resources and helping to improve the quality of message transmission in IoV environment
  Key words: Internet of Vehicles (IoV); Delay Tolerant Network (DTN); routing algorithm; message forwarding
  0 引言
  随着近年来物联网技术的迅猛发展,车联网已经成为城市智能交通的重要组成部分。同其他开放动态网络类似,城市车联网具有拓扑结构动态多变、车辆交互时间短暂以及车辆节点分布不均匀等特点[1],经常会出现网络连接和消息通信的中断以及消息难以通过合适的中继到达目的节点等现象[2-3],因此,车联网对通信链路的鲁棒性和延迟容忍性提出了较高的要求。而延迟容忍网络(Delay Tolerant Network,DTN) 能够在缺少端到端连接的情况下以“存储携带转发”的形式完成消息投递,其本质是一种位于区域网络之上的覆盖(overlay)网络,其特点主要包括网络拓扑时变性和网络连通间歇性[4-6],因此将DTN技术加以扩展并在城市交通环境下的车联网中进行应用,将有效提高消息投递的可达性和可靠性[7]。
  路由的选择将极大程度地影响消息传输的效率和网络资源的开销,而现有的许多DTN 路由协议在设计上并未考虑城市交通环境中车辆的移动特性和分布特点,且对于中继节点的筛选指标单一。因此本文在考虑城市交通环境固有特点的情况下,提出一种基于车辆节点认知交互的路由算法,以有效提高消息传输的效率并降低网络资源开销。
  1 相关工作
  目前国内外学者对应用于DTN中的路由策略进行了深入的研究。其中Vahdat[8]提出了Epidemic路由策略,在该策略中,每当两个节点相遇,会触发彼此间的反熵会话,期间双方互相交换各自的摘要向量(Summary Vector,SV),对比各自缓存中的消息,并把对方缺少的消息发送给对方。该策略在大规模随机移动模型中以及网络资源充足时能够表现出较好的性能。然而,从本质上而言Epidemic协议是一种以牺牲网络资源为代价获得较高投递率和较低时延的洪泛策略[9]。相比较而言,Spray and Wait[10-11] 策略是一种限制性洪泛路由策略,其过程分为Spray阶段和Wait阶段,在Spray阶段源节点中的消息以拷贝副本的形式被扩散到邻居节点,若该阶段没有发现目标节点,则携带消息副本的中继节点进入Wait阶段,即不再借助中继节点而采用直接传递(Direct Delivery)的方式将消息交付给目的节点,该方式通过减少网络中的包副本数,能有效减少网络开销。但上述两种策略均依赖拷贝副本转发,因此节点的信息冗余度高。为了避免消息的盲目转发并进一步减少开销,Lindgren等[12]提出了Prophet路由策略,该路由策略利用节点间相遇的历史信息,将节点间的相遇频繁程度量化为节点间的相遇概率,并以此来预测相遇节点作为中继遇到目的节点的概率[13-14]。通过对中继节点的筛选,可有效减少低效副本的产生,以此提高网络资源的利用率[15]。   雖然Prophet路由在一定程度上缓解了网络资源的消耗,但该策略并未考虑真实城市交通路网中不同车辆节点具备不同分布特点和移动特性的情况[16];且仅仅以节点建立连接频率作为相遇概率更新的依据,同时也没有考虑中继节点对于消息成功投递的有效性以及连接过程的稳定性等因素。例如,若某节点多次协助消息成功投递,又或是某节点的连接行为较稳定等,那么对于该节点的评估值应该更高。
  本文针对城市交通路网环境,借鉴Prophet这类预测路由的设计思路,以消息传输过程中的多元因素为依据,将历史相遇情况和历史投递情况融入评价指标,综合连接建立和消息投递完成两个阶段中的节点行为,并将其量化为节点间的认知交互度(Cognitive Interaction, CI),以此表示消息投递的可达性,以便携包转发节点于中继节点筛选阶段作出合理的下一跳转发选择,从而提高消息的投递率,并有效降低时延和开销。
  2 基于节点认知交互的路由策略
  为了清楚地阐明本文所提出的路由策略算法,首先需要对路由设计过程中所涉及的相关定义进行解释和说明。
  4 结语
  针对城市交通车联网应用环境中的DTN,为了提高消息的传输性能,本文定义了车辆节点交互新鲜度、节点交互参与度、消息效用度等相关概念,同时引入车辆节点距离及跳数等因素,提出了一种基于车辆节点认知交互的路由策略,全面客观地刻画和描述了节点间的历史交互行为,并将其量化组合用于中继节点筛选。由于综合考虑了影响中继节点选择的多种因素,因此本文所提出的路由策略算法能显著提高消息投递率,同时有效地降低时延和开销。
  在后续的研究中,本文将考虑引入车辆节点社交信息,评估社交属性对中继节点选择的影响,进一步优化路由算法,提高消息的传输效率。
  参考文献:
  [1] FLOREA A R, COSTEA I M. Analisys of improvements the urban transport conditions by using electronic intelligent transports systems case study: urban transportation [C]// Proceedings of the 2014 International Conference on Electronics, Computers and Artificial Intelligence. Piscataway, NJ: IEEE, 2014: 73-78.
  [2] WANG T, CAO Y, ZHOU Y, et al. A survey on geographic routing protocols in Delay/Disruption Tolerant Networks (DTNs) [J]. International Journal of Distributed Sensor Networks, 2016(6): 3174670. DOI:?10.1155/2016/3174670; https://journals.sagepub.com/doi/full/10.1155/2016/3174670
  [3] DOERING M, PGEL T, WOLF L. DTN routing in urban public transport systems [C]// CHANTS 10: Proceedings of the 5th ACM Workshop on Challenged Networks. New York: ACM, 2010: 55-62.
  [4] FALL K, FARRELL S. DTN: an architectural retrospective [J]. IEEE Journal on Selected Areas in Communications, 2008, 26(5): 828-836.
  [5] VOYIATZIS A G. A survey of delay- and disruption-tolerant networking applications [J]. Journal of Internet Engineering, 2012, 5(1): 331-344.
  [6] WU J, YANG S, DAI F. Logarithmic store-carry-forward routing in mobile Ad Hoc networks [J]. IEEE Transactions on Parallel and Distributed Systems, 2007, 18(6): 735-748.
  [7] BENAMAR M, AHNANA S, SAIYARI F Z, et al. Study of VDTN routing protocols performances in sparse and dense traffic in the presence of relay nodes [J]. Journal of Mobile Multimedia, 2014, 10(1/2): 78-93.
  [8] VAHDAT A BECKER D. Epidemic routing for partially-connected Ad Hoc networks, Handbook of Systemic Autoimmune Diseases [R]. Durham: Duke University, Department of Computer Science, 2000., 2000.   [9] TORNELL S M, CALAFATE C T, CANO J-C, et al. DTN protocols for vehicular networks: an application oriented overview [J]. IEEE Communications Surveys & Tutorials, 2017, 17(2): 868-887.
  [10] SPYROPOULOS T, PSOUNIS K, RAGHAVENDRA C S. Spray and wait: an efficient routing scheme for intermittently connected mobile networks [C]// WDTN 05: Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking. New York:ACM, 2005: 252-259.
  [11] AL-HINAI A, ZHANG H, CHEN Y, et al. TB-SnW: trust-based spray-and-wait routing for delay-tolerant networks [J]. Journal of Supercomputing, 2014, 69(2): 593-609.
  [12] LINDGREN A, DORIA A, SCHELéN O. Probabilistic routing in intermittently connected networks [C]// SAPIR 2004: Proceedings of the 2004 International Workshop on Service Assurance with Partial and Intermittent Resources. Berlin: Springer-Verlag, 2004: 239-254.
  [13] QIN S, FENG G, ZHANG Y. How the contact-probing mechanism affects the transmission capacity of delay-tolerant networks [J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1825-1834.
  [14] SHINKO I, ODA T, SPAHO E, et al. A simulation system based on ONE and SUMO simulators: performance evaluation of First Contact, Prophet and Spray-and-Wait DTN protocols [C]// BWCCA 15: Proceedings of the 2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications. Washington, DC:IEEE Computer Society, 2015: 137-142.
  [15] LIM H H, DONG Y S, YUN W C. An improved PRoPHET routing protocol through the restriction of message duplication [J]. Journal of Korean Institute of Information Technology, 2016, 14(6): 81.
  [16] GAITO S, MAGGIORINI D, ROSSI G P, et al. Bus switched networks: An Ad Hoc mobile platform enabling urban-wide communications [J]. Ad Hoc Networks, 2012, 10(6): 931-945.
转载注明来源:https://www.xzbu.com/8/view-14941674.htm