您好, 访客   登录/注册

基于惩罚误差矩阵的同步预测无线体域网节能方法

来源:用户上传      作者:

  摘 要:针对传统无线体域网(WBAN)预测模型对感知数据预测精度低、计算量大、能耗高的问题,提出一种基于惩罚误差矩阵的自适应三次指数平滑算法。首先在感知节点与路由节点之间建立轻量级预测模型,其次采用地毯式搜索方式对预测模型进行参数优化处理,最后采用惩罚误差矩阵对预测模型参数作进一步的细粒化处理。实验结果表明,与ZigBee协议相比,在1000时隙范围内,所提方法可节省12%左右的能量;而采用惩罚误差矩阵与地毯式搜索方式相比,预测精度提高了3.306%。所提方法在有效降低计算复杂度的同时能进一步降低WBAN的能耗。
  关键词:无线体域网;惩罚误差矩阵;轻量级预测模型;地毯式搜索;体域网
  中图分类号: TP393
  文献标志码:A
  Abstract: To solve the problem that traditional Wireless Body Area Network (WBAN) prediction model has low prediction accuracy, large computational complexity and high energy consumption, an adaptive cubic exponential smoothing algorithm based on penalty error matrix was proposed. Firstly, a lightweight prediction model was established between the sensing node and the routing node. Secondly, blanket search was used to optimize the parameters of the prediction model. Finally, penalty error matrix was used to further refine the parameters of the prediction model. The experimental results showed that compared with the ZigBee protocol, the proposed method saved about 12% energy in 1000 time slot range; compared with blanket search method, the prediction accuracy was improved by 3.306% by using penalty error matrix. The proposed algorithm can effectively reduce the computational complexity and further reduce the energy consumption of WBAN.
  Key words: Wireless Body Area Network (WBAN); penalty error matrix; lightweight prediction model; blanket search; body area network
  0 引言本文的文字比较差
  作为信息通信技术和医学的交叉领域,无线体域网(Wireless Body Area Network, WBAN)[1-2]旨在为公众提供实时的健康服务[3-4],如临床决策支持[5]、家庭健康监测[6]等。
  为了给予WBAN用户更宽广的活动空间与优质的用户体验,节点必须在多跳网络环境中进行通信[7]。路由节点负责接收和转发监测数据,接收器负责分析来自路由节点的感知数据,通过Serial Interface通信或TCP(Transmission Control Protocol)通信将监测数据发送至数据处理中心[8-9]。在多跳环境下的WBAN中,将接收器作为协调器简化了复杂的同步过程的需要,能够提高数据传输过程中的能量效率,但感知节点与路由节点将承受较大的计算消耗和报文转发负担,因此降低感知节点与路由节点的能耗,延长WBAN生命周期成为本文研究的关键问题。
  但遗憾的是,目前尚未见到在多跳WBAN环境中节点低功耗的解决方案,为此,降低感知节点能耗成为解决电池续航能力的一大出路。文献[10]中提出了基于小波变换量最小二乘支持向量机(Wavelet Transform-Least Squares Support Vector Machine, WT-LSSVM)的轻量级预测模型,通过在感知节点与路由节点之间建立同步预测模型减少冗余数据的传输,但该算法不适合于在硬件资源严重受限的无线传感网络中应用。目前无线体域网领域的专家提出了关于IEEE802.15.6[11]的改进版以及在媒体访问控制(Media Access Control, MAC)层中基于时分多址(Time Division Multiple Access, TDMA)的一种改进方案,但并没有针对无线体域网应用层进行有效的设计和改进。
  通过对数据的同步分析预测可大大减少接收节点和发送节点打开收发机的次数以降低无线体域网能耗
  本文在应用层部分通过对数据的同步分析预测减少接收节点和发送节点打开收發机的次数以降低无线体域网能耗。因此在本文研究中,选择以ZigBee多跳树形网络架构[12]为基础,在感知节点和路由节点之间建立以基于惩罚误差矩阵的自适应三次指数平滑算法[13]为骨架的轻量级预测模型,并针对预测模型权重参数进行细粒化调节。该算法能自适应调节权重参数,提高预测准确率,同时降低感知节点与路由节点能耗,可以为长期健康监测应用提供更加长久的网络服务。   本文首先采用自适应三次指数平滑算法在感知节点与路由节点之间建立轻量级预测模型以减少冗余数据的转发,实现了有限的节能效果;然后通过引入惩罚误差矩阵细粒化预测模型参数自适应调节权重参数,实现了预测模型参数精度和预测效果的显著提升;最后通过实验验证了引入惩罚误差矩阵提升了自适应三次指数平滑算法构建的预测模型的预测精度,对整个WBAN网络节能效果的提升有很大的帮助。
  1 轻量级预测模型融合
  1.1 自适应三次指数平滑算法
  4 结语
  本文提出了一种基于惩罚误差矩阵的同步预测体域网节能方法,实现了数据有效传输与低功耗。通过在感知节点和路由节点之间建立基于惩罚误差矩阵的自适应三次指数平滑轻量级预测模型对周期非线性生理信息进行更加有效的细粒化预测,节省了大量的能耗,避免了频繁地更换电池,能实现对感知节点的低功耗管理和控制。
  参考文献:
  [1] BAE J, SONG K, LEE H, et al. A 0.24-nJ/b wireless body-area-network transceiver with scalable double-FSK modulation [J]. IEEE Journal of Solid-State Circuits, 2011, 47(1): 310-322.
  [2] CHEN S-L, LEE H-Y, CHEN C-A, et al. Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications[J]. IEEE Systems Journal, 2010, 3(4): 398-409.
  [3] PENG Y, WANG X, GUO L, et al. An efficient network coding-based fault-tolerant mechanism in WBAN for smart healthcare monitoring systems [J]. Applied Sciences, 2017, 7(8): 817.
  [4] KHATUN F, HEYWOOD A E, HANIFI S M A, et al. Gender differentials in readiness and use of mHealth services in a rural area of Bangladesh [J]. BMC Health Services Research, 2017, 17(1): 573.
  [5] CHUNG K, PARK R C. PHR open platform based smart health service using distributed object group framework[J]. Cluster Computing, 2016, 19(1): 505-517.
  [6] GREEN M L, RUFF T R. Why do residents fail to answer their clinical questions? A qualitative study of barriers to practicing evidence-based medicine[J]. Academic Medicine Journal of the Association of American Medical Colleges, 2005, 80(2): 176-182.
  [7] FRANTZIDIS C A, GILOU S, BILLIS A, et al. Future perspectives toward the early definition of a multivariate decision-support scheme employed in clinical decision making for senior citizens [J]. Healthcare Technology Letters, 2017, 3(1): 41-45.
  [8] RANI S, MALHOTRA S, SANGWAN V. Detailed study of RS-232 serial interface [J]. Elena F Pérez Carrillo, 2014: 417-426.
  [9] KIM Y, LEE S, LEE S. Coexistence of ZigBee-based WBAN and WiFi for health telemonitoring systems [J]. IEEE Journal of Biomedical & Health Informatics, 2015, 20(1): 222-230.
  [10] 王汝言, 翟美玲, 吳大鹏. 就带有同步预测的WBAN时序数据融合算法[J]. 通信学报, 2015, 36(6):13-21.(WANG R Y,ZHAI M L, WU D P, Time series data aggregation algorithm with synchronous prediction for WBAN [J].Journal on Communications, 2015, 36(6): 13-21.)
  [11] 梁正友,姚玉梅.IEEE 802.15.6中能量有效的无线体域网拓扑结构优化研究[J].通信学报,2016,37(6):1-10.(LIANG Z Y,YAO Y M. Study of energy efficient WBAN topology optimization in IEEE 802.15.6 [J].Journal on Communications,2016, 37(6): 13-21.)
  [12] 张皛,邬春学,陈凯明.基于负载均衡的ZigBee动态路由优化算法[J].计算机工程,2016,42(3):138-142. (ZHANG X, WU C X, CHEN K M. ZigBee dynamic routing optimization algorithm based on load balance [J]. Computer Engineering, 2016, 42(3): 138-142.)
  [13] 王国权,王森,刘华勇,等.基于自适应的动态三次指数平滑法的风电场风速预测[J].电力系统保护与控制,2014(15):117-122. (WANG G Q, WANG S, LIU H Y, et al. Self-adaptive and dynamic cubic ES method for wind speed forecasting[J]. Power System Protection and Control, 2014(15): 117-122.)
转载注明来源:https://www.xzbu.com/8/view-14941675.htm