您好, 访客   登录/注册

收缩徐变对装配式混凝土叠合梁挠度的影响

来源:用户上传      作者:

  摘要:收缩徐变作用导致混凝土叠合梁挠度增加,从而影响构件的力学性能。为了研究收缩徐变作用下混凝土叠合梁挠度增加规律,建立了收缩徐变作用下混凝土叠合梁挠度计算方法,与数值模拟进行比较,结果相近。运用该方法对混凝土叠合梁的加载龄期、应力水平进行敏感性分析,结果表明:应力水平不同时,混凝土叠合梁挠度随加载龄期呈现不同变化趋势,应力水平较低时,挠度随加载龄期增大而增大,反之,挠度随加载龄期增大而减小;混凝土叠合梁叠合面处的徐变微差相对收缩微差较小,叠合面处预制和现浇混凝土变形不一致引起的挠度主要由收缩不一致引起。
  关键词:装配式叠合梁;收缩徐变;挠度;数值模拟;敏感性分析
  中图分类号:TU375.1 文献标志码:A 文章编号:2096-6717(2019)06-0127-08
  装配式混凝土结构是指预制混凝土构件通过可靠的连接方式装配而成的混凝土结构,具有提高工程质量、减少现场施工作业、减少环境污染等优点。混凝土叠合梁是装配式混凝土结构中的主要构件形式,是预制混凝土梁顶部在现场后浇混凝土而形成的整体受弯构件。混凝土叠合梁中现浇和预制混凝土的龄期和强度存在差异,会在现浇和预制混凝土之间存在收缩徐变微差。收缩徐变微差会造成现浇和预制混凝土之间有微差应力并进一步增大混凝土叠合梁的挠度,从而影响构件的力学性能。
  上述现象的本质是不同材料随时间产生不同应变,导致构件的应力重分布与变形,该问题在钢一混组合梁结构已有较为深入的研究。在钢一混组合梁结构领域中,钢梁不发生收缩徐变作用,从而限制了混凝土的收缩徐变,造成两者之间存在收缩徐变微差。目前,主要采用有限单元法、试验研究与数值模拟研究这方面的现象。Si等提出了有效单步单元法分析钢一混组合梁的长期性能,并通过数值研究表明收缩徐变作用会导致变形增加与应力重分布,尤其是在界面处。Gilbert研究表明在徐变作用下,未开裂时钢一混叠合板增加的挠度与初始挠度的比值比开裂时更大。Erkmen等建立了分步数值解法,并通过算例表明梁的初始曲率对组合梁的时变变形有显著影响。樊健生等建立了考虑混凝土收缩、徐变以及开裂影响的组合梁长期效应计算模型,并通过研究发现对于承受负弯矩作用的组合梁,混凝土翼板开裂会导致截面刚度降低,挠度增大,同时,使得混凝土应力释放而降低徐变效应的影响。
  目前,收缩徐变作用对装配式混凝土叠合梁的影响方面已有相关研究。陈小根用平均曲率法推导了收缩徐变微差应力应变的公式,比较了组合截面法、分离截面法与平均曲率法,证明了3种计算方法在实质上相同且计算结果一致,但平均曲率法形式简单,截面特征的影响比较清楚。之后,陈小根提出了时变作用下考虑混凝土有效变形模量的微差应力一应变计算实用公式,并估计了收缩徐变微差极限值。杨维国等通过在混凝土结构设计的经典计算公式中引入截面协同工作系数来体现收缩徐变的影響。王文炜等进行了预应力作用下新老混凝土组合梁混凝土收缩徐变的试验研究,结果表明,预应力混凝土叠合梁界面间的滑移较小,界面间的粘结可靠,预应力混凝土叠合梁的挠度、沿梁高的混凝土应变、截面曲率及界面间的应变差随时间的增长逐渐增大。
  综上所述,收缩徐变作用下装配式混凝土叠合梁挠度的计算以有限单元法和求解微分方程组为主,其计算过程复杂,不便应用。本文基于平均曲率法建立了装配式混凝土叠合梁挠度计算方法,将该方法与数值模拟进行了比较,并结合工程应用分析了预制混凝土加载龄期、叠合面处应力水平对挠度的影响规律。
  1考虑收缩徐变作用的混凝土叠合梁挠度计算方法
  1.1基本假定
  混凝土叠合梁常用截面形式如图1所示。中国相关规范明中考虑长期作用对挠度增大的影响时推荐了欧洲CEB-FIP、美国ACI等规范推荐的计算方法,在装配式混凝土叠合梁的挠度计算和有限元分析时,采用CEB-FIP MC90模型,并引入如下假定:
  1)在正常使用条件下,混凝土叠合梁挠度分析时混凝土应力一应变关系处于弹性工作阶段。
  2)钢筋混凝土构件是由钢筋和混凝土两种材料组成,将钢筋换算为等效混凝土,换算时钢筋的重心位置与换算后等效混凝土的重心位置一致,换算后的受力效果不变。
  3)由于叠合梁的翼缘刚度相对腹板刚度较小,翼缘处预制和现浇混凝土之间的收缩徐变微差对梁的挠度影响较小,忽略其影响,将翼缘预制混凝土等效代换为现浇混凝土。
  1.3徐变作用下荷载挠度的变化值
  荷载作用下混凝土叠合梁会产生初始挠度WO,徐变作用下该挠度会增加,挠度演化过程如图2所示,叠合前,预制混凝土产生挠度值为ψuWo现浇混凝土产生挠度值为ψcWo,当预制和现浇混凝土叠合后,两者共同变形产生挠度w1。由于抗弯刚度越大,变形越小,预制和现浇混凝土叠合时各自产生的变形量与抗弯刚度成反比,因此,叠合时预制混凝土产生如式(2)所示变形。
  1.4收缩徐变微差引起的挠度
  收缩徐变微差的定义如图3所示,预制混凝土和现浇混凝土持荷时会在叠合面处产生相同变形,由于预制和现浇混凝土的混凝土强度等级和加载龄期不同,产生的收缩徐变应变不同,其差值为收缩徐变微差D。
  沿梁长取一单位长度微段如图3所示,由于现浇和预制混凝土之间存在收缩徐变微差D,为了满足变形协调条件,在叠合面处会产生剪应力,并在横截面之间会产生一微小角度θ,θ即为该单位微段的曲率。依据材料力学中梁的挠度和跨中曲率的关系,D引起的挠度与混凝土叠合梁跨中处θ的关系为
  现浇和预制混凝土的加载龄期设置如下:现浇混凝土的加载龄期为28d,考虑到预制混凝土比现浇混凝土至少提前浇筑一个月,由于施工现场进度的不确定性,预制混凝土加载龄期分别取68、98、128、158d。计算结果和数值模拟结果的对比如图8所示。持载365d时,预制混凝土加载龄期为68、98、128、158d时,计算值和模拟值的误差分别为1%、7%、10%、13%,与模拟值相比,计算值偏大,且误差随着预制混凝土加载龄期的增大而增大,这是因为数值模拟时钢筋对混凝土徐变应变的约束作用使变形减小,而理论计算时,假设式(2)中把钢筋等效换算为混凝土时会忽略钢筋对混凝土徐变应变的约束作用。   通过理论计算与数值模拟的对比发现,计算值比模拟值偏大,但对于工程应用而言,其差值在允许范围内且偏安全,此外,对于工程应用而言,理论计算方法更为简单方便。下面研究收缩徐变作用下混凝土叠合梁挠度计算方法的工程应用。
  3工程应用研究
  基于计算公式分析预制混凝土加载龄期、预制混凝土跨中叠合面处截面初始应力对装配式混凝土叠合梁挠度的影响规律,为便于称呼,将预制混凝土跨中叠合面处截面初始应力称为叠合面处设计应力。算例叠合梁的基本参数与上文相同。
  3.1预制混凝土加载龄期、叠合面处设计应力对收缩微差和徐变微差的影响分析
  改变预制混凝土的加载龄期,根据式(7)、式(8)计算现浇和预制混凝土的徐变微差和收缩微差,结果如图9所示。图9(a)、(b)中表明徐变微差和收缩微差都会随着预制混凝土加载龄期的增大而增大,但收缩微差的值比徐变微差大一个量级。同时改变预制混凝土加载龄期和叠合面处设计应力,如图9(c)所示,收缩微差不随叠合面处设计应力变化,徐变微差随着叠合面处设计应力的增大而增大,且徐变微差相较收缩微差较小。在弹性工作阶段,混凝土叠合梁叠合面处应力不会大于预制混凝土的开裂应力,预制混凝土加载龄期365d且持荷365d时,收缩微差与徐变微差基本达到最大值,所以,图9包含了混凝土叠合梁叠合面处设计应力、徐变微差与收缩微差的基本情况。其中,徐变微差与收缩微差的最大比值为0.183,表明徐变微差相对收缩微差较小,当跨中叠合面处设计应力很小时,混凝土叠合梁挠度计算时可以忽略徐变微差的影响。
  3.2预制混凝土加载龄期和叠合面处设计应力对挠度的影响分析
  由图8可知,计算结果和模拟结果中叠合梁的徐变系数都随着预制混凝土加载龄期的增大而增
  4结论
  1)基于平均曲率法分析收缩徐变微差的影响,提出了考虑收缩徐变作用的装配式混凝土叠合梁挠度计算方法。将收缩徐变作用下混凝土叠合梁挠度的理论计算结果和模拟结果进行对比,表明理论计算比数值模拟的结果略大,但在允许范围内且偏安全,且理论计算方法更加简单方便,較适合于工程应用。
  2)混凝土叠合梁中徐变微差相对收缩微差较小,收缩徐变微差引起的挠度主要由收缩作用引起,当叠合面处设计应力很小时,为简化计算可以忽略徐变微差的影响。
  3)通过敏感性分析发现,不同应力水平下混凝土叠合梁挠度随加载龄期变化呈现不同趋势,应力水平较低时,混凝土叠合梁挠度随预制混凝土加载龄期的增大而增大,反之,挠度随加载龄期的增大而减小。
转载注明来源:https://www.xzbu.com/8/view-15116273.htm