您好, 访客   登录/注册

微生态制剂在水产养殖水质改良中的应用

来源:用户上传      作者: 高存川 徐春厚

  摘要:微生态制剂能有效降解养殖水体中的氨氮和亚硝态氮等污染物,是一种环保型的水质改良剂。概述了微生态制剂作为水质改良剂在水产养殖中的应用,分析了影响其使用效果的因素,提出了进一步发展水产微生态制剂的方向。
  关键词:微生态制剂;水产养殖;水质改良;固定化技术
  中图分类号:S949;X172 文献标识码:A 文章编号:0439-8114(2012)07-1419-04
  
  Application of Probiotics in Aquaculture Water Improving
  
  GAO Cun-chuan,XU Chun-hou
  (Department of Animal Science, Guangdong Ocean University,Zhanjiang 524088,Guangdong,China)
  
  Abstract: Probiotics could effectively degrade the water contaminants such as ammonia and nitrite, and it is an environment -friendly water improving agent. The application and development of probiotics in the aquaculture were summarized, and the factors that influence its effectiveness were analyzed, and the further development of aquaculture probiotics direction was put forward.
  Key words: probiotics; aquaculture; water improving; immobilization technology
  
  近年来,随着水产养殖业集约化程度的提高和养殖密度的增加,大量的残余饵料和水产动物排泄物沉积于池底,导致水体溶解氧降低、氨氮和亚硝态氮的浓度增加以及有害微生物的大量繁殖[1];同时,抗生素滥用使致病菌的耐药性增加,严重破坏了养殖水体中正常微生物区系的平衡,造成二次污染,给水产养殖生产和水产品质量安全带来极大的隐患。
  为了减少因氨氮及亚硝态氮污染带来的危害,在养殖过程中常采用换水、曝气、投放药物等方法处理,但由于这些方法成本高、作用效果持续时间短,具有很大的局限性。因此,寻求新型的健康养殖模式,开发具有水质改良作用的环保型产品成为水产养殖领域研究的热点。微生态制剂是从天然环境中提取分离出来的微生物经过培养扩增后形成的含有大量有益菌的制剂,具有成本低、无毒副作用、无药物残留、无耐药性等优点,可以用来改善养殖生态环境、净化水质、作为饲料添加剂等广泛使用,成为替代抗生素的较为理想的产品[2]。文章对微生态制剂作为水质改良剂的现状进行了概述,分析了影响其使用效果的因素,提出了进一步发展水产微生态制剂的方向。
  1 水产养殖中的常用微生态制剂
  水产微生态制剂可分为单一菌群微生态制剂和复合微生物制剂两大类。目前,在水产养殖中常用的有益微生物主要有芽孢杆菌(Bacillus)、乳酸杆菌(Lactobacillus)、酵母菌(Saccharomyces)、假单胞菌(Pseudomonas)、双歧杆菌(Bifidobacterium)等种类以及光合细菌(Photosynthetic bacteria)、硝化细菌(Nitrifying bacteria)、反硝化细菌(Denitrifying bacteria)等,其中光合细菌、芽孢杆菌、硝化细菌、反硝化细菌作为微生态制剂在水产养殖水质改良中应用最广泛。
  1.1 单一菌群微生态制剂
  1.1.1 光合细菌 光合细菌是指能在厌氧条件下进行光合作用但不产生氧气的一类革兰氏阴性细菌。根据营养方式,光合细菌可分为光能自养型和光能异养型。光合细菌细胞内含有类似于植物叶绿体的细菌叶绿素,以光为能源,以水产动物的排泄物、氨氮、有机酸以及硫化氢等污染物作为碳源和供氢体进行光合作用,不仅可以去除水体中的有机物、提高溶氧量,还能抑制致病菌和有害藻类的生长繁殖。因此,光合细菌在水产养殖中具有良好的水质调控作用。
  付保荣等[3]的研究表明,光合细菌能明显降解鲤鱼养殖水体中有机物和氨氮的含量、增加溶氧量、稳定水体pH,对水体中致病菌和有害藻类也有明显的抑制作用。刘芳等[4]用紫色非硫光合细菌净化鱼塘养殖水体也得到了类似的结果,结果表明其可以有效地降低水体中亚硝态氮的含量,降解率为41.18%。王兰等[5]用海藻酸钠固定光合细菌,发现固定化大大提高了光合细菌的生长速率,且固定化菌对养殖水体的净化能力明显优于悬浮态菌,试验结果显示固定化光合细菌的氨氮去除率可达89.7%,化学需氧量去除率达75.3%,而游离菌的氨氮去除率和化学需氧量去除率分别为68.9%和48.9%。
  1.1.2 芽孢杆菌 芽孢杆菌绝大部分为革兰氏阳性菌,是一类好氧或兼性厌氧的杆状细菌,能产生抗逆性内生孢子,具有耐高温、耐酸碱等特点,广泛分布于土壤和水中。芽孢杆菌能迅速降解养殖水体中的有机物,包括残余饵料、水产动物的排泄物、死亡生物残体及池底淤泥,还能降低氨氮与亚硝态氮的含量、增加溶氧量,从而有效地改良水质,营造良好的养殖生态环境。在水产养殖中应用较多的是枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacillus licheniformis),这两种芽孢杆菌都被农业部列为安全使用菌株。
  陈静等[6]研究枯草芽孢杆菌对水质的净化作用,结果表明添加枯草芽孢杆菌后,试验组池水中氨氮和亚硝态氮的含量显著低于对照组。杭小英等[7]在罗氏沼虾养殖池塘中投放枯草芽孢杆菌,结果显示,枯草芽孢杆菌能显著降低水体的化学需氧量以及氨氮和亚硝态氮的含量,其中氨氮的最大降解率为59.61%,亚硝态氮的最大降解率为86.70%。芽孢杆菌还能提高水产动物的免疫力和生产性能。刘克琳等[8]研究发现,地衣芽孢杆菌能促进鲤鱼胸腺、脾脏的生长发育及抗体的产生。Ziaei等[9]研究芽孢杆菌对南美白对虾生产性能的影响,结果表明试验组对虾的生长速率和成活率以及消化道中的淀粉酶、蛋白酶和脂肪酶的活性显著高于对照组。
  1.1.3 硝化细菌和反硝化细菌 硝化细菌为革兰氏阴性、专性好氧的化能自养菌。硝化细菌可分为两大类群:亚硝化菌属(Nitrosomonas)和硝化菌属(Nitrobacter)。亚硝化细菌将水体中的氨氮氧化为亚硝态氮;硝化细菌将亚硝态氮氧化为对水生动物无害的硝态氮,同时还可以利用硫化氢合成自身物质,从而达到调控水质的目的,但其繁殖速率很慢,其主要原因是硝化细菌需要在体内利用无机物合成有机物。硝化细菌适宜在有机物浓度低的水体中生长,过多的有机物会抑制硝化细菌的生长[10]。
  反硝化细菌是指一类能将硝态氮还原为气态氮的细菌群,大部分为异养、兼性厌氧菌,能利用池底淤泥中的有机物作为碳源,将硝态氮转化成氮气。硝化细菌和反硝化细菌能克服光合细菌对亚硝态氮转化率较低和芽孢杆菌对氨氮转化率低的缺点,被认为是降解养殖水体中硝态氮和氨氮最为有效的微生物,在水产养殖中有着广泛的应用。

  目前,生物过滤系统已成为水族箱养殖中不可或缺的重要组成部分,但生物过滤系统的成熟往往需要花费好几个月的时间,Gross等[11]报道,在生物过滤系统中加入高效硝化细菌,可缩短生物过滤系统成熟的时间,并能使水体中的氨氮含量快速下降,同时提高了鱼类的存活率和生长速度。生物过滤系统中硝化细菌的硝化作用速率受到很多因素的影响。研究发现,生物过滤池水体中溶解氧与总氨氮浓度及碳氮摩尔比(C/N)的不同会影响硝化作用速率[12,13]。张小玲等[14]从土壤中分离到一株高活性反硝化细菌,并对其进行了反硝化特性的研究,结果表明,当养殖水体中碳氮摩尔比达到8.0∶1、菌体浓度达到108 CFU/L时,能充分发挥其反硝化特性,硝态氮和亚硝态氮的降解率可分别达到94.79%和99.94%。全为民等[15]研究反硝化细菌对不同浓度硝态氮的去除率,结果表明在硝态氮初始浓度为1 mg/L时,1 d内硝态氮去除率达到70%;而硝态氮为100 mg/L时,在7 d内能去除水体中90%的硝态氮。
  1.2 复合微生态制剂
  复合微生态制剂是以光合细菌、芽孢杆菌、硝化细菌等多种有益微生物复合而成的微生态制剂。采用单一菌群微生态制剂来调控水质存在一定的局限性,而复合菌群能通过互利共生关系组成复杂而又相对稳定的微生态系统,发挥各种菌群的不同功能,可以通过协同作用有效地降低养殖水体中的有害物质,从而改善池塘的生态环境。黄永春[16]研究复合微生态制剂对养虾水体水质的影响,结果表明水体中溶解氧提高11.0%,化学需氧量降低8.0%,氨氮含量降低20.7%,亚硝态氮含量降低10.0%。由于不同微生物菌群的生长繁殖条件不同,但是,同一水质条件能否同时满足所有复合菌群发挥作用,它们之间是否存在拮抗作用,这些都需要进一步的深入研究。
  2 微生物固定化技术在水产养殖水质改良中的应用
  微生物固定化技术是通过化学或物理的手段将游离微生物定位于限定的空间区域内,使其仍保持活性并能反复利用的方法。固定化微生物的制备方法大致可以分成吸附法、共价结合法、交联法和包埋法4大类。其中,包埋法操作简单,对微生物活性影响较小,制作的固定化微生物球的强度高,其应用也最广泛。目前,微生态制剂在我国水产养殖中的应用大部分采取直接投加游离菌的方式,这种方式存在很多弊端:①游离菌对环境的适应能力差,导致活菌大量死亡;②池塘换水时,游离菌易被流水冲走;③游离菌易被水中其他生物所捕食;④游离菌菌体较轻,不易于自然沉降,限制了其降解下层水体有机物的能力[17]。
  使用微生物固定化技术可以克服上述缺点,从而可以稳定高效地发挥水质改良的作用。刘毅等[18]采用海藻酸钠包埋光合细菌,比较了固定化菌和悬浮态菌的生理特性和降解能力,结果表明,固定化光合细菌生长速率明显提高,对养殖水体的净化速率也明显优于悬浮态菌,固定化小球粒径3.5 mm、活菌初始密度0.12 mg/L为最佳固定化条件。黄正等[19]用硝化细菌富集培养基摇床驯化污泥,选用聚乙烯醇(PVA)作为包埋载体,添加活性炭粉末包埋固定化硝化污泥,驯化后处理养殖废水中的氨氮,结果表明化学需氧量去除率为74.9%,氨氮去除率达82.5%。Nagadomi等[20]研究结果表明,用聚乙烯醇固定化球净化鱼塘水质比海藻酸盐固定化球的效果好。聚乙烯醇凝胶具有强度大、价格低廉、生物毒性小等优点,是有效的固定化载体之一。近几年,国内外学者纷纷研究利用新载体,Manju等[21]报道,将密度较小的软木粉碎成木屑(木屑具有较大的表面积)作为载体固定硝化细菌降解对虾育苗水体中的氨氮取得了满意的效果。Saliling等[22]利用木屑、麦秸秆、塑料作为载体,评估它们在反硝化工艺处理养殖废水中的性能,结果显示,3个试验组对氨氮的降解率都达到99%,并可以提高水体的pH,但木屑与麦秸秆在140 d的试验过程中损耗率为16.2%和37.7%。余林娟等[23]以沙砾和沸石粉作为载体固定芽孢杆菌,结果显示试验组的亚硝态氮含量约为对照组的1/3。Shan等[24]采用多孔黏土固定硝化细菌,结果表明固定化菌可以有效地降低水体中的总氮。Menasveta等[25]在生物膜反应器中添加不同载体,分别对斑节对虾(Penaeus monodon)养殖水体进行了反硝化净化的研究。结果表明,反硝化后可保证养殖水体中氨氮和亚硝酸盐质量浓度在养殖水质要求范围内(小于0.5 mg/L和小于0.2 mg/L),而且以碎牡蛎壳作为载体时效果最明显,硝酸盐质量浓度由160 mg/L降至25 mg/L以下。因此可以预见,研制开发性能优良的载体材料仍是微生物固定化技术的重要课题。
  3 影响微生态制剂使用效果的因素
  由于微生态制剂是含有大量有益微生物的活菌制剂,而且养殖水体环境具有复杂多样性的特点,其作用易受多种环境因子(如水温、pH、溶氧量等)的影响。不同菌种受环境因子的影响也有所不同,如光合细菌需要光照进行光合作用,然而,强烈光照会影响硝化细菌的生长,在pH偏高的水体中使用芽孢杆菌制剂的效果不明显。
  另外,饲料成分对微生态制剂的使用效果也有很大的影响。饲料中的维生素、寡糖、酸化剂、中草药等与微生态制剂有很好的协同作用;而在饲料中添加抗生素对微生态制剂则有明显的抑制作用[26]。尤其值得注意的是,在水体中投消毒剂会严重降低微生态制剂的活性。因此,微生态制剂在保存和使用过程中应遵循产品说明,选择合理的使用方法,才能达到改良水质的目的。
  4 小结与展望
  目前,微生态制剂作为水质改良剂在我国水产养殖中已得到广泛应用,在消除养殖水体有机污染、降解水体氨氮和亚硝态氮等方面取得了良好的效果,形成了“水产养殖-生物修复”的绿色健康养殖新模式,对促进水产养殖业的可持续发展具有重要的意义。但是与国际水平相比,我国在微生态制剂研究应用方面还比较落后,仍存在很多问题亟待解决。
  由于微生态制剂的特殊性和养殖水体环境的复杂多样性,使得微生态水质改良剂产品的应用效果存在一定的不稳定性。因此,未来应重点研究益生菌的生理特性与作用机制等方面的基础理论,为养殖水环境的调控提供理论依据。另一方面,应加强对益生菌分子生态学及分子生物学的研究,利用现代生物学技术对菌株进行快速鉴别,并对微生态产品进行实验室检测,以确保质量和安全。Wang等[27]也认为微生态产品在出厂前应对其进行检测,以防有害菌的扩散。此外,应尽快建立微生态制剂菌种保藏与认定中心,制定相关的质量指标、检测方法等行业标准,完善检测体系,这对保证微生态制剂产品的质量有着重要的意义。可以预见,随着微生物固定化技术的迅速发展,尤其是新的包埋载体和包埋方法的推广应用,必将大幅度地提高益生菌对不良环境的耐受力及其产品的稳定性,为微生态制剂在水产养殖中的应用提供更广阔的前景。
  参考文献:
  [1] EMPARANZA E J M. Problems affecting nitrification in commercial RAS with fixed-bed biofilters for salmonids in Chile[J]. Aquacultural Engineering,2009,41(2):91-96.
  [2] 何义进. 微生态制剂降解养殖水体氨氮及亚硝酸盐的研究[D]. 南京:南京农业大学,2007.

  [3] 付保荣,曹向宇,冷 阳, 等. 光合细菌对水产养殖水质和水生生物的影响[J]. 生态科学, 2008,27(2):102-106.
  [4] 刘 芳,王 敏,杨 慧,等. 一株紫色非硫光合细菌净化养殖水体初步研究[J]. 微生物学杂志,2008,28(2):95-96.
  [5] 王 兰,廖丽华. 光合细菌固定化及对养殖水净化的研究[J]. 微生物学杂志,2005,25(3):50-53.
  [6] 陈 静,徐海燕,谷 巍. 枯草芽孢杆菌B7的分离和净化水质的初步研究[J]. 河北渔业,2008(11):10-11,29.
  [7] 杭小英,叶雪平,施伟达,等. 枯草芽孢杆菌制剂对罗氏沼虾养殖池塘水质的影响[J]. 浙江海洋学院学报(自然科学版),2008,27(2):197-200.
  [8] 刘克琳,何明清. 益生菌对鲤鱼免疫功能影响的研究[J]. 饲料工业,2000(6):24-25.
  [9] ZIAEI N S, REZAEI M H, TAKAMI G A, et al. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus[J]. Aquaculture, 2006,252(2-4):516-524.
  [10] GOLZ W J, RUSCH K A, MALONE R F. Modeling the major limitations on nitrification in floating-bead filters[J]. Aquacultural Engineering, 1999,20(1):43-61.
  [11] GROSS A, NEMIROVSKA A, ZILBERG D, et al. Soil nitrifying enrichments as biofilter starters in intensive recirculating saline water aquaculture[J]. Aquaculture,2003,223(1-4):51-62.
  [12] ZHU S M,CHEN S L. The impact of temperature on nitrification rate in fixed film biofilters[J]. Aquacultural Engineering,2002,26(4):221-237.
  [13] MICHAUD L, BLANCHETON J P, BRUNI V, et al. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters[J].Aquacultural Engineering,2006,34(3):224-233.
  [14] 张小玲,梁运祥. 一株反硝化细菌的筛选及其反硝化特性的研究[J]. 淡水渔业,2006,36(5):28-32.
  [15] 全为民,沈新强,甘居利,等. 海洋沉积物中反硝化细菌的分离及去除硝酸盐氮的模拟试验[J]. 海洋渔业,2005,27(3):232-235.
  [16] 黄永春.有效微生物菌群对养虾水体细菌生态和水质的影响[J]. 广东海洋大学学报, 2009,29(1):44-48.
  [17] 崔华平,林炜铁. 固定化微生物在水产养殖中的应用[J]. 水产科学,2008,27(4):213-216.
  [18] 刘 毅,袁月华. 固定化光合细菌净化养殖水质研究[J]. 水利渔业,2008,28(2):86-88.
  [19] 黄 正,范 玮,李 谷,等. 固定化硝化细菌去除养殖废水中氨氮的研究[J]. 华中科技大学学报(医学版),2002,31(1):18-20.
  [20] NAGADOMI H, HIROMITSU T, TAKENO K, et al. Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyviny l alcohol beads[J]. Journal of Bioscience and Bioengineering,1999,87(2):189-193.
  [21] MANJU N J, DEEPESH V, ACHUTHAN C, et al. Immobilization of nitrifying bacterial consortia on wood particles for bioaugmenting nitrification in shrimp culture systems[J]. Aquaculture,2009,294(1-2):65-75.
  [22] SALILING W J B, WESTERMAN P W, LOSORDO T M. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations[J]. Aquacultural Engineering,2007,37(3):222-233.
  [23] 余林娟,杨宗韬,王业勤. 固定化芽孢杆菌对鱼虾池亚硝酸盐的控制[J]. 渔业现代化,2004(2):9-11.
  [24] SHAN H, OBBARD J. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria[J]. Appl Microbiol Biotechnol,2001,57(1-2):791-798.
  [25] MENASVETA P, PANYITDAM T, SIHANONTH P, et al. Design and function of a closed, recirculating seawater system with denitrification for the culture of black tiger shrimp broodstock [J]. Aquacultural Engineering,2001,25(1):35-49.
  [26] 金红春, 杨春浩. 浅谈微生物制剂在水产养殖业上的应用[J]. 渔业致富指南,2009(21):60-62.
  [27] WANG Y B, LI J R, LIN J D. Probiotics in aquaculture: Challenges and outlook [J]. Aquaculture,2008,281(1-4):1-4.


转载注明来源:https://www.xzbu.com/8/view-1684719.htm