您好, 访客   登录/注册

基于太赫兹辐射产生的理论研究分析

来源:用户上传      作者: 赵志宏

  【摘要】分别介绍了用光学方法和电子学方法产生THz波的原理,其中重点介绍了光电导产生THz波辐射源的方法。然后,着重分析了利用非线性差频产生THz波的方法,对非线性差频的原理及其进展进行了总结,并引用实验结果对其进行了论证,对其将来的研究和发展做出了展望和分析。
  【关键词】光电导 光整流 光抽运 非线性差频
  一、引言
  近年来,非线性光学的飞速发展带动了基于光子学原理产生太赫兹技术的发展,如基于周期微结构材料和固体非线性材料的光学参变振荡、光整流、光电导、光抽运、光学受激效应、表面发射效应、光学倍频及差频效应、光学切连科夫(cherenkov)效应等非线性效应。其中,非线性光学差频方法获得太赫兹辐射因其没有阀值、实验设施容易搭建、容易实现差频转换而称为研究热点。
  二、THz波的应用前景
  1.THz波成像
  利用THz时域光谱技术可以直接测量THz电磁脉冲所产生的瞬态电磁场。可以直接测得样品的介电常数和厚度的分部。应用于国家安全包括情报、安检、破案、生物、化学和医学中的各种成像应用。两维实时THz活体成像可应用于野外昆虫的实时观测,同时也可应用于军事中特种部队和警察的装备,在一定范围内对敌人的有生力量和犯罪分子进行准确探测。
  2.医疗诊断
  由于很多的生物大分子及DNA分子的旋转及振动能级所处于THz波段,生物体对THz波会产生独特的响应,所以THz辐射可用于疾病诊断,生物体的探测及癌细胞的表皮成像。癌变组织的THz波具有不同的振幅,波形和时间延迟,我们可以从中得到肿瘤的大小和形状。对人体组织器官成像,可做出肿瘤的早期诊断,许多医院的专家对此项肿瘤的初期诊断技术很满意,并要求早日投入生产,进入临床应用。
  3.环境监测
  适合于对固体、液体、气体、以及火焰和流体等介质的电、声学性质的研究以及化学组分的表征。THz辐射也可用于污染物检测、生物和化学物质的探测,对生物组织包括植物、动物的组织结构进行成像可获得组织新鲜程度的信息,这可用于食品的保鲜和食品加工过程的监控;检测隐藏在箱包中一般家用材料及民用设备中的特殊物质,如炸药、毒品等。
  4.宽带移动通讯于星间通讯
  THz电磁波是很好的宽带信息载体,THz波比微波能做到的宽带和讯道数多的多,特别适合卫星间、星地间及局域网的宽带移动通讯。
  三、基于光学方法的太赫兹波辐射源
  1.光电导产生THz波辐射
  光电导方法就是在光电导半导体表面淀积金属制成偶极天线电极结构,用光子能量大于半导体禁带宽度超短脉冲激光照射半导体材料。当强度为I(t)的飞秒激光激发偏置半导体时,如果激光的光子能量大于半导体的能带隙,则在照射出的导带和价带上将分别产生电子和空穴。光载流子密度快速变化,并在外加偏置直流电压Vb的作用下加速运动。由此,将产生电磁辐射并通过天线向自由空间发射。由于辐射的能量主要来自天线上所加的偏置电场,可以通过调节外加偏置电场的大小来获得能量较高的太赫兹波,而制作大孔径的光电导天线可以提高电磁辐射的效率。
  快速偏置的光电导体有飞秒光脉冲(泵浦光)激发,作为瞬态电流源,通过天线向空间传播短周期的瞬态变化。为了探测这样一个变化需要一个与发射其相似的装置,但这个光电导体不需要偏置。作为探测器的光电导体由同样的飞秒光脉冲(探测光)激发,在激发瞬间可以探测输出流lout。通过一可调的时间线将飞秒光脉冲相对于泵浦光I(t)延迟时间a,则探测光强度为I(t+a)。
  太赫兹辐射源的输出性能主要决定于三个要素:光电半导体材料、天线几何结构和抽运激光脉冲宽度。光电半导体材料si、GaAs、GaP等是产生超短激光脉冲的关键部件,随着对光电导半导体的深入研究,已经开发了很多适宜做光电导开关的材料,在选用制作超快半导体材料时,必须考虑以下因素:(1)载流子寿命短;(2)载流子迁移率高;(3)材料的暗态电阻率大。
  2.光整流产生太赫兹波
  发生在盐酸氢钾中的光整流效应最早用于产生兆赫级的辐射,当时使用0.1um的激光脉冲。后来由于LiTa03中cu++光整流效应的发现,这种方法的应用范围扩展到了皮秒级领域。进一步的发展使这种方法已经可以应用干各种THz实验。光整流效应是一种非线性效应,是利用飞秒激光脉;(脉冲宽度在亚皮秒量级)和非线性介质如ZnTe)相互作用而产生低频电极化场。此电极化场在晶体表面辐射出太赫兹波。
  光整流效应发生在非中心对称材料中。我们可以将光整流效应看做是电光效应的逆过程:入射超短激光脉冲同过非线性极化系数偶合而合成出近似直流(其实为THz,但相对于光的频率来说,频率非常低)的极化。
  电磁波的振幅强度和频率分布决定于激光脉冲的特征和非线性介质的性质。常用非线性介质有ZnTe和GaAs。另外,DAST很有潜力,它是非线性效应最强的物质之一。
  3.光抽运太赫兹波气体激光器
  直接产生THz波的激光器,是利用一台C02激光器的远红外输出光抽运一个充有甲烷(CH4)、氨气(NH3)、氰化氢(HCN)或是甲醇(CH30H)等物质的低气压腔,由于这些气体分子转动能级间的跃迁频率处于太赫兹波段范围,所以可以形成太赫兹波受激辐射,通过选择合适的工作介质、寻找新的能级跃迁谱线,就可以基本覆盖整个太赫兹波段。这种方法可以达到高达上百瓦的输出功率,且已实现商业产品化,并被美国国家航天局应用于大气卫星观测。虽然这种技术被证实切实可行,但这种辐射源不是连续可调的,而且需要大的气体腔和能量输入,在体积、重量、效率、可靠性、维护性、运行寿命,以及频率稳定性方面仍需要改进。
  四、基于电子学方法的太赫兹波辐射源
  随着太赫兹科学技术的迅速发展,利用真空电子学产生太赫兹辐射的研究工作取得了很大的进步,其中包括真空电子器件、电子回旋脉塞、自由电子激光、Cherenkov辐射,甚至使用存储环加速器来产生高亮度太赫兹辐射。真空电子器件如反波管、扩展互作用振荡器、绕射辐射器件等的工作频率已接近或达到1THz。回旋管可望在1THz产生千瓦级的脉冲输出,平均功率可达几十瓦以上。自由电子激光是获得极高能量太赫兹发射的另一种方法。在自由电子激光中,一束高速自由电子在真空中传输并通过具有空间变化的强磁场,使得电子束振荡并发射光子,反射镜用来把光子限制在电子束内,这里电子束为激光的增益介质,这种系统的造价昂贵,体积巨大,同时需要精密仪器,但是可以产生连续脉冲形式的发射,发射功率比通常使用的光电导天线高出六个数量级以上。电子激光器和气体激光器是目前可以获得太赫兹最高输出功率的方法。
  五、利用非线性差频产生太赫兹波
  目前光学方法产生THz波辐射主要集中在光参量振荡器(OPO)及差频产生(DFG)方法来获得这一波长范围内的激光。但是OPO输出光能量较低,光束质量比较差;而DFG相对于OPO和化学激光器,由很多优点,如可调范围灵活、全固化结构紧凑、输出能量高等。目前,常采用铌酸锂作为

DFG的非线性晶体材料,它的非线性系数大,损伤阈值较高。
  六、差频方法产生太赫兹波的进展
  差频方法产生太赫兹辐射的最大优点是没有阈值,实验设备简单,结构紧凑。与前面提到的光整流与光电导方法相比,它可以产生较高功率的太赫兹波辐射,且不需要价格昂贵的抽运装置。差频方法产生太赫兹波的技术关键是要获得功率较高、波长比较接近的抽运光和信号光(两波长相差一般不大于lOnm),以及具有较大的二阶非线性差频晶体。这样,利用差频方法甚至可以得到比太赫兹波参量振荡器[11―13]更宽的太赫兹波调谐范围,但其存在着转换效率低下的缺点。
  早在上世纪20世纪60年代中期,国外就有人利用一台铷玻璃激光器得到1.059―1.073波长输出,通过利用一块石英晶体进行非线性差频,得到大约3THz的输出,但输出效率很低,到上世纪20世纪70年代,R.Ll Ag―garwal等在80K的温度下,用两个单模连续C02激光器在GaAs晶体中通过非共线差频,在0.3~4.3THz频率范围内实现了连续调谐的远红外辐射,线宽小于100kHz。而K.H.Yang等用一台双频率输出的染料激光器,在LiNb03、ZnO等晶体中利用共线和非共线相位匹配,均实现了在0.6―5.7THz连续可调远红外辐射,峰值功率达到200mW。近年来,日本科学家T.Tanabe等利用Nd:YAG激光器(输出波长为1064nm)和该激光器三倍频输出所抽运的BBO晶体光学参量振荡器(BBO―OPO)的输出分别作为抽运源和信号光,采用GaP晶体作为差频晶体,利用非线性相位匹配配置,通过改变两入射光的夹角,实现了0.5~3THz的太赫兹波调谐输出,并在1.3THz处达到480mW的峰值功率输出。
  七、全固态激光器泵浦的准相位匹配差频THz波辐射源
  利用差频过程获得THz波的最大优点是没有阀值,且试验设备很容易搭建容易实现差频转换,但DFG的转换效率很低,其关键是要获得波长相近的泵浦光和信号光,下面以1319nm和1338nm双波长运转的高功率、准连续全固态Nd:YAG激光器为泵浦源,泵浦周期为16,455,u,mPPLN,实现准相位匹配差频过程,获得0.3lTHz的辐射源。
  近年来,THz技术已经有了很大的发展,现在需要把THz技术从试验研究尽快转向实用化。据专家预测,在生物医学的各项应用中,THz技术最有可能率先取得重大突破。在这一领域的发展,在很大程度上取决于应用物理学、生物学、生命科学等交叉学科的研究广度和深度。因此,开发和利用这项技术,需要综合各个领域的知识,积聚更多的研究力量。
  参考文献:
  [1]马成举,陈延伟,向军,张显斌,太赫兹辐射产生技术进展,太赫兹光学,2007,(4).


转载注明来源:https://www.xzbu.com/9/view-1631854.htm