一类非线性离散扰动系统的反周期解
来源:用户上传
作者:孟鑫
摘要:研究了一類具有指数型二分性非线性离散扰动系统的反周期解.应用Banach不动点定理,给出了非线性离散扰动系统存在唯一反周期解的充分条件,并通过例子说明了主要结论在实际问题中的应用.
关键词:扰动系统; 指数型二分性; 反周期解;Banach不动点定理
中图分类号:0175.7
文献标志码:A DOI: 10.3969/j.issn.1000-5641.2019.06.001
0 引言
指数型二分性是线性自治方程双曲率概念在非自治方程中的推广,它是研究非线性微分方程以及非自治离散动力系统的重要工具.指数型二分性理论是由Lyapunov和Poincare最先提出的,随后指数型二分性理论被广泛应用到微分方程定性与稳定性等领域之中[1-4].离散动力系统的指数型二分性理论同样是众多学者所研究的重要问题,关于指数型二分性在离散动力系统中的应用,已经有了一些基本的结论[5-9].
近年来,反周期系统的反周期解问题引起了国内外一些学者的关注[10-17].动力系统的反周期问题常出现在物理过程的数学模型中以及偏微分方程和抽象微分方程的研究中.但是,由于离散动力系统不仅可能存在一些更复杂的动力学行为,并且缺少必要的研究工具.所以关于离散动力系统反周期解问题的研究结果不多见.如文献[10-11].
[参考文献]
[1]COPPEL W A. Dichotomies in Stability Theory [M]. New York: Springer-Verlag, 1978.
[2]CHURCH K, LIU X. Bifurcation of bounded solutions of impulsive differential equations [J] . International Journalof Bifurcation and Chaos, 2016, 26(14): 1-20.
[3]PINTO M. Dichotomy and existence of periodic solutions of quasilinear functional differential equations [J].Nonlinear Analysis, 2010, 72(3): 1227-1234.
[4]RODRIGUES H M, SILVERIA M. On the relationship between exponential dichotomies and the Fredholmalternative [J]. J Differential Equations, 1988, 73(3): 78-81.
[5] BEREZANSKY L, BRAVERMAN E. On exponential dichotomy, Bohl-Perron type thorems and stability ofdifference equations [J]. J Math Anal Appl, 2005, 304(2): 511-530.
[6]DRAGICEVIC D. A note on the nonuniform exponential stability and dichotomy for nonautonomous differenceequations [J]. Linear Algebra and Its Applications, 2018, 552(1): 105-126.
[7]AULBACH B, MINH N. The concept of spctral dichotomy for linear difference equations [J] . J Math Anal Appl,1994, 185(2): 275-287.
[8]HUY N T, MINH N V. Exponential dichotomy of difference equations and applications to evolution equations on the half-line [Jl Computers & Mathematics with Applications, 2001, 42(3/5): 301-311.
[9]ZHANG J, FAN M, ZHU H. Existence and roughness of exponential dichotomies of linear dynamic equations ontime scales [J]. Computers & Mathematics with Applications, 2010, 59(8): 2658-2675.
[10]AGARWAL R P, CABADA A, OTERO-ESPINAR V. Existence and uniqueness results for n-th order nonlineardifference equations in presence of lower and upper solutions [Jl Arch Inequal Appl, 2003: 1(3/4): 421-431.
[11] AGARWAL R P, CABADA A, OTERO-ESPINAR V, et al. Existence and uniqueness of solutions for anti- periodic difference equations [J]. Arch Inequal Appl, 2004, 2(4): 397-412. [12] KUANG J, YANG Y. Variational approach to anti-periodic boundary value problems involving the discretep-Laplacian [J]. Boundary Value Problems, 2018(1): 86.
[13] LU X, YAN P, LIU D. Anti-periodic solutions for a class of nonlinear second-order Rayleigh equations withdelays [J]. Commun Nonlinear Sci Numer Simul, 2010, 15(11): 3593-3598.
[14] CHEN Y Q, CHO J, O'REGAN D. Anti-periodic solutions for evolution equations [J]. Math Nachr, 2005: 278(4) :356362.
[15] HADJIAN A, HEIDARKHANI S. Existence of one non-trivial anti-periodic solution for second-order impulsivedifferential inclusions [Jl Mathematical Methods in the Applied Science, 2017, 40(14): 5009-5017.
[16] PU H, YANG J. Existence of anti-periodic solutions with symmetry for some high-order ordinary differentialequations [J]. Boundary Value Problems, 2012(1): 108.
[17] CHEN Z. Global exponential stability of anti-periodic solutions for neutral type CNNs with D operator [J].International Journal of Machine Learning and Cybernetics, 2018, 9(7): 1109-1115.
收稿日期:2018-09-13
基金項目:国家自然科学基金(10971084);吉林省教育厅“十三五”科学技术项目(JJKH20170368KJ);吉林师范大学博士启动项目(吉师博2016002号)
作者简介:孟鑫,男,博士,副教授,研究方向为动力系统.E-mail: mqym@sina.cn.
转载注明来源:https://www.xzbu.com/1/view-15071183.htm