一类具退化强制的椭圆方程熵解的存在性
来源:用户上传
作者:代丽丽
摘要:通过运用截断方法研究了一类带有变指数的椭圆方程.先利用变指数情形下的Marcinkiewicz估计,在得到逼近解序列的截断函数先验估计的基础上,选取适当的检验函数对逼近解序列做出估计,以此得出这类椭圆方程在加权Sobolev空间中熵解的存在性.
关键词:退化椭圆方程; 加权Sobolev空间; 变指数; 截断函数
中图分类号:0175.2
文献标志码:A
DOI: 10.3969/j.issn.1000-5641.2019.04.006
0 引言
近几十年来,因为椭圆方程在几何学、电磁学、弹性力学、流体力学中都有着重要应用,所以该选题一直都是学者们关注的重点内容.随着研究的不断深入,带有变指数的偏微分模型走进了学者们的视野,它主要来源于电流变流体[1],可以描述非Newton流体的热对流效应[2]以及热动力学中的一些演化现象[3],非齐次媒质的热与物质交换[4]等,还可应用于力学[5],图像学[6]等多方面.与常指数偏微分模型相比它具有更多的优势,能够更为实际和精准地描述扩散过程.
[参考文献]
[1]RUZICKA M. Electrorheological fluids: Modeling and Mathematical Theory [M]. Berlin: Springer-Verlag, 2000.
[2]ANTONTSEV S N, DfAZ J I, DE OLIVEIRA H B. Thermal effects without phase changing [J]. Progress inNonlinear Differential Equations and Their Application, 2015, 61: 1-14.
[3]ELEUTERI M, HABERMANN J. Calderon-Zygmund type estimates for a class of obstacle problems with p(x)growth[J]. J Math Anal Appl, 2010, 372: 140-161.
[4]RODRIGUES J F, SANCHON M. URBANO J M. The obstacle problem for nonlinear elliptic equations withvariable growth and L1-data[J]. Monatsh Math, 2008, 154: 303-322.
[5]BLANCHARD D, GUIBE 0. Existence of a solution for a nonlinear system in thermoviscoelasticity[Jl. AdvDifferential Equations, 2000, 5: 1221-1252.
[6]HARJULEHTO P, HASTO P, LATVALA V, et al. Critical variable exponent functionals in image restoration[J].Appl Math Lett, 2013. 26: 56-60.
[7]GOL'DSHTEIN V. UKHLOV A. Weighted Sobolev spaces and embedding theorems[J]. Trans Amer Math Soc,2009. 361: 3829-3850.
[8]BLANCHARD D, MURAT F, REDWANE H. Existence and uniqueness of a renormalized solution for a fairlygeneral class of nonlinear parabolic problems [J]. J Differential Equations, 2001, 177(2): 331-374.
[9]DAI L L, GAO W J, LI Z Q. Existence of solutions for degenerate elliptic problems in weighted Sobolev space[J].Journal of Function Spaces, 2015, 2015: 1-9.
[10]ZHANG C, ZHOU S. Entropy and renormalized solutions for the p(x)-Laplacian equation with measure data[Jl.Bull Aust Math Soc, 2010. 82: 459-479.
[11] 代麗丽,曹春玲. 一类具权函数的退化椭圆方程的性质[J].吉林大学学报(理学版), 2018, 56: 589-593.
[12]LIONS J L. Quelques methodes de resolution des problemes aux limites non lineaires[M]. Paris: Dunod, 1969.
转载注明来源:https://www.xzbu.com/1/view-15025177.htm