非线性系统的多扩展目标跟踪算法
来源:用户上传
作者:
摘 要:目前扩展目标跟踪算法大都假设其系统为线性高斯系统,针对非线性系统的多扩展目标跟踪问题,提出了采用粒子滤波技术对目标状态和关联假设进行联合估计的多扩展目标跟踪算法。首先,提出了将多扩展目标状态和关联假设进行联合估计的思想,解决了在估计目标状态和数据关联时相互牵制的问题;其次,根据扩展目标演化模型、量测模型建立多扩展目标状态和关联假设的联合建议分布函数,并利用粒子滤波技术实现联合估计的Bayes框架;最后,为解决直接采用粒子滤波实现时存在的维数灾难问题,将目标联合状态粒子的产生和演化分解为各个目标状态粒子的产生和演化,对每个目标的粒子集根据与其相关的权重单独进行重抽样,这样在抑制目标状态估计较差部分的同时使每个目标都保留了对其状态估计较好的粒子。仿真实验结果表明,与扩展目标概率假设密度滤波器的高斯混合实现方式和序贯蒙特卡洛实现方式相比,所提算法的状态估计精度较高,形状估计的Jaccard距离分别降低了30%、20%左右,更适合于非线性系统的多扩展目标跟踪。
关键词:扩展目标跟踪;非线性系统;Bayes框架;联合估计;粒子滤波;建议分布函数
中图分类号:TN273
文献标志码:A
Abstract: Most of current extended target tracking algorithms assume that its system is linear Gaussian system. To track multiple extended targets for nonlinear Gaussian system, an multiple extended target tracking algorithm using particle filter to jointly estimate target state and association hypothesis was proposed. Firstly, the idea of joint estimation of the multiple extended target state and association hypothesis was proposed, which avoided mutual constraints in estimating target state and data association. Then, based on extended target state evolution model and measurement model, a joint proposal distribution function for multiple extended target and association hypothesis was established, and the Bayesian framework for the joint estimation was implemented by particle filtering. Finally, to avoid the dimension disaster problem in the implementation of the particle filter, the generation and evolution of the multiple extended target combined state particles were decomposed into that of the individual target state particles, and the particle set of each target was resampled according to the weight association with it, so that each target retained the particles with better state estimation while suppressing the poor part of target state estimation. Simulation results show that, in comparison with the Gaussianmixture implementation of extended target probability hypothesis density filter and the sequential Monte Carlo implementation of that, the estimation accuracy of the target state is improved, and the Jaccard distance of shape estimation is reduced by approximately 30% and 20% respectively. The proposed algorithm is more suitable for multiple extended target tracking of the nonlinear system.
英文关键词Key words: extended target tracking; nonlinear system; Bayesian framework; joint estimation; particle filter; proposal distribution function
0 引言
扩展目标在每个时刻可产生多个量测,因此传统多点目标跟踪算法无法应用于多扩展目标跟踪。目前多扩展目标跟踪算法大致有两类: 一类是通过修改假设条件将点目标跟踪算法的数据关联方法如联合概率数据关联(Joint Probabilistic Data Association, JPDA)、概率多假设方法(Probabilistic MultiHypothesis, PMHT)等,推广到多扩展目标跟踪[1-3];另一类是基于随机有限集,将概率假设密度(Probability Hypothesis Density, PHD)滤波器、势概率假设密度(Cardinalized PHD, CPHD)滤波器、高斯混合概率假设密度(Gaussian Mixture PHD, GMPHD)滤波器、序贯蒙特卡洛概率假设密度(Sequential Monte Carlo PHD, SMCPHD)滤波器等应用到多扩展目标跟踪算法[4-7],但这类算法理论上需要考虑每一时刻量测集的所有可能划分,因此计算量较大,计算量会随着扩展目标个数或量测个数急剧增加。文献[6-8]为减少计算量只考虑了一部分划分算法,但擴展目标跟踪性能严重依赖于划分算法,在目标相距较近时难以获得理想的效果。 目前已存在非線性系统的单扩展目标跟踪算法,如文献[9]中将RaoBlackwellised粒子滤波器应用到扩展目标跟踪,线性状态部分采用卡尔曼滤波器,非线性部分采用粒子滤波器进行估计;文献[10]中将非线性量测函数线性化,利用基于随机矩阵的扩展目标跟踪算法扩展到非线性系统。现有的多扩展目标跟踪算法一般是针对线性高斯系统,为解决非线性问题通常将处理非线性系统的方法如无迹卡尔曼滤波器(Unscented Kalman Filter, UKF)、粒子滤波器(Particle Filter, PF)与线性系统的多扩展目标滤波器相结合,如文献[11]中将UKF应用于扩展目标GMPHD(Extended Target GMPHD, ETGMPHD)滤波器,采用非线性量测模型实现状态估计的更新,但是这种处理非线性的方式的滤波性能会随着非线性程度的增加急速下降。
本文针对多扩展目标跟踪的数据关联和非线性问题,由扩展目标状态演化模型、量测模型建立目标状态和数据关联的联合建议分布函数,采用粒子滤波对多个扩展目标状态和数据关联进行联合估计,提出了非线性系统的多扩展目标跟踪算法。在此基础上,提出了顺序采样粒子滤波器来解决维数灾难的问题。
5 结语
针对非线性多扩展目标跟踪,本文采用粒子滤波对多扩展目标状态和数据关联进行联合跟踪,提出了多扩展目标粒子滤波器, 解决了目标状态估计和数据关联相互牵制的问题,减小了非线性和关联假设的不确定性带来的估计误差。仿真结果表明,在初始时刻、目标出现时刻以及目标相距较近时对位置跟踪效果较好,目标状态演化模型与目标实际状态演化相差较大时位置估计精度明显较高,而形状估计的性能明显优越。本文并未对形状的表示方式进行研究,下一步的研究方向是在建立复杂形状的表示和量测源模型建立的基础上,研究本文算法的适用性。
参考文献 (References)
[1] BAUM M, HANEBECK U D. Shape tracking of extended objects and group targets with starconvex RHMs [C]// Proceedings of the 14th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 338-345.
[2] DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10(3):197-208.
[3] 韩玉兰, 朱洪艳, 韩崇昭. 采用随机矩阵的多扩展目标滤波器[J]. 西安交通大学学报, 2015, 49(7): 98-104. (HAN Y L, ZHU H Y, HAN C Z. A multitarget filter based on random matrix[J]. Journal of Xian Jiaotong University, 2015, 49(7): 98-104.)
[4] MAHLER R. PHD filters for nonstandard targets,I: extended targets[C]// Proceedings of the 12th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2009: 915-921.
[5] ORGUNER U, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized probability hypothesis density filter [C]// Proceedings of the 14th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 1-8.
[6] GRANSTROM K,LUNDQUIST C,ORGUNER U. Extended target tracking using a Gaussian mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286.
[7] GRANSTROM K, ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices [J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671.
[8] HIRSCHER T, SCHEEL A, REUTER S, et al. Multiple extended object tracking using Gaussian processes [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 868-875. [9] OZKAN E, WAHLSTROM N, GODSILL S J. RaoBlackwellised particle filter for starconvex extended target tracking models [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 1193-1199.
[10] LAN J, LI X R. Extended object or group target tracking using random matrix with nonlinear measurements [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 901-908.
[11] 韓玉兰, 朱洪艳, 韩崇昭. 多扩展目标的高斯混合概率假设密度滤波器[J].西安交通大学学报, 2014, 48(4): 95-101. (HAN Y L, ZHU H Y, HAN C Z. Gaussianmixture probability hypothesis density filter for multiple extended target[J]. Journal of Xian Jiaotong University, 2014, 48(4): 95-101.)
[12] 王雪, 李鸿艳, 孔云波,等. 基于星凸RHM的扩展目标SMCPHD滤波[J]. 计算机应用研究, 2017, 34(7):2144-2147.(WANG X, LI H Y, KONG Y B, et al. SMCPHD filter for extended target tracking based on starconvex random hypersurface models[J]. Application Research of Computers, 2017, 34(7):2144-2147.)
[13] VERMAAK J, GODSILL S J, PEREZ P. Monte Carlo filtering for multitarget tracking and data association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 309-332.
[14] LIU J S. Metropolized independent sampling with comparisons to rejection sampling and importance sampling[J]. Statistics and Computing, 1996, 6(2):113-119.
[15] DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3):197-208.
[16] GRANSTROM K, LUNDQUIST C, ORGUNER U. Tracking rectangular and elliptical extended targets using laser measurements [C]// Proceedings of the International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 592-599.
转载注明来源:https://www.xzbu.com/8/view-14941560.htm