3D多输入多输出正交频分复用系统中基于奇异值分解的信道估计方法
来源:用户上传
作者:
摘 要: 在3D多输入多输出正交频分复用(MIMO-OFDM)系统模型中,分析了基于导频的信道估计方案.针对线性最小均方误差方法的算法复杂度高的问题,应用奇异值分解(SVD)算法降低信道自相关矩阵的维数,以减小算法的复杂度.仿真结果表明:所提出的基于奇异值分解的信道估计算法,能够在保证误码率(BER)性能的情况下,具有更低的算法复杂度.
關键词: 3D多输入多输出正交频分复用(MIMO-OFDM); 信道估计; 奇异值分解(SVD); 导频
中图分类号: TN 929.5文献标志码: A文章编号: 1000-5137(2019)01-0020-06
Abstract: The model of 3D multiple input multiple output and orthogonal frequency division multiplexing(MIMO-OFDM) system was introduced,and the channel estimation scheme based on pilot was analyzed.In view of the problem of high complexity of the linear least mean square error algorithm,the singular value decomposition(SVD) algorithm was proposed and applied to reduce the dimension of channel autocorrelation matrix,thus reducing computational complexity.The simulation results showed that the proposed channel estimation algorithm based on singular value decomposition could maintain the bit error rate(BER) performance with lower computational complexity.
Key words: 3D multiple input multiple output and orthogonal frequency division multiplexing(MIMO-OFDM); channel estimation; singular value decomposition(SVD); pilot
0 引 言
为了满足通信系统对高传输速率的要求,多输入多输出(MIMO)与正交频分复用(OFDM)相结合的技术一直是无线通信中的关键技术之一.3D MIMO技术通过引入天线的俯仰角概念,更好地利用了空间域的资源,能够进一步提高系统吞吐量和频谱效率.
信道估计是获取信道状态信息的重要技术,可用于接收端传输信号的有效恢复.目前,3D MIMO系统的信道估计方法的优化研究主要有两类.第一类是从信道估计算法出发,减小原有算法的复杂度或者探寻新的估计算法,优化系统的误码率(BER)和均方误差(MSE)等性能指标.ZHANG等[1]针对最小均方误差(MMSE)算法复杂度高的问题,提出了一种级联型(Cascaded)的最小均方误差算法,该方法要对高维的自相关矩阵进行求逆运算,但算法复杂度依然很高.XUE等[2]从3D MIMO信道的稀疏性出发,利用压缩感知理论将信道估计问题转化为凸优化问题,提出了量子细菌觅食优化(QBFO)算法,提高系统的MSE性能,但未讨论在不同导频负载情况下该方法是否仍然具有优势.第二类是通过优化导频的设计,减少导频开销、系统的负载.WANG等[3]引入了导频负载概念,主要讨论了基于压缩感知的估计算法在不同导频负载影响下的性能,但未讨论其他信道估计算法的性能.ZHANG等[4]提出了基于相关性的导频分配方案,优化了导频分配的复杂度,但仿真中只针对最小二乘(LS)信道估计算法,能否将其广泛推广有待讨论.
本文作者针对3D MIMO-OFDM系统中线性最小均方误差(LMMSE)估计方法的算法复杂度高的缺陷,提出了基于奇异值分解(SVD)的改进信道估计方法,来降低算法的复杂度.
1 信道估计方案设计
1.1 信道估计模型
对于3D MIMO-OFDM系统在接收端的信道响应,可以建模如下[5]:
1.2 基于SVD的信道估计方案
1.3 相关算法的复杂度比较
3种算法中SVD算法的算法复杂度优于文献[1]中的级联算法和LMMSE算法.
2 仿真分析
3 结 论
分析了3D MIMO-OFDM的信道模型和导频的设计方案,对LMMSE和SVD两种信道估计方案进行了仿真分析,并进行了算法复杂度比较.仿真结果表明:所提出的基于SVD的信道估计算法在所述系统中,能够在保证误码率性能的情况下,具有更低的算法复杂度.未来可以在以下两个方面进行更深入的研究:一是在导频设计上实现算法复杂度和性能的平衡;二是从信道稀疏性入手,研究以压缩感知和生物智能为主的寻优算法.
参考文献:
[1] ZHANG H,LIANG Y,LI T,et al.Low complexity channel estimation in 3D MIMO systems [C]//2016 8th International Conference on Wireless Communications & Signal Processing (WCSP).Yangzhou:IEEE,2016:1-4. [2] XUE J,JIANG S,LIANG Y,et al.Quantum bacterial foraging optimization based sparse channel estimation for 3D MIMO systems [C]//2016 8th International Conference on Wireless Communications & Signal Processing (WCSP).Yangzhou:IEEE,2016:1-5.
[3] WANG A,WANG Y,XU J,et al.Low complexity compressed sensing based channel estimation in 3D MIMO systems [C]//2015 IEEE 81st Vehicular Technology Conference (VTC Spring).Glasgow:IEEE,2015:1-5.
[4] ZHANG J,HE X.Pilot aided channel estimation for 3D MIMO-OFDM systems with planar transmit antennas and elevation effect [C]//2013 IEEE 24th Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC).London:IEEE,2013:316-320.
[5] AUER G.3D MIMO-OFDM channel estimation [J].IEEE Transaction on Communication,2012,60(4):972-985.
[6] MA W,QI C.Channel estimation for 3D lens millimeter wave massive MIMO system [J].IEEE Communications Letters,2017,21(9):2045-2048.
[7] 3GPP Organizational Partners.3GPP TS38.211:V15.0.0 7-12 [S].Valbonne:3GPP Organizational Partners,2017.
[8] 孫锴,黄威.MIMO-OFDM移动通信技术及MATLAB实现 [M].北京:电子工业出版社,2013.
SUN K,HUANG W.MIMO-OFDM mobile communication technology and MATLAB implementation [M].Beijing:Publishing House of Electronics Industry,2013.
[9] 杜盈.LTE上行链路信道估计与均衡算法研究 [D].长沙:湖南大学,2013.DU Y.Research on LTE uplink channel estimation and equalization algorithm [D].Changsha:Hunan University,2013.
[10] 何小丹.3D MIMO信道估计技术研究 [D].北京:北京邮电大学,2013.HE X D.Research on 3D MIMO channel estimation technology [D].Beijing:Beijing University of Posts and Telecommunications,2013.
(责任编辑:包震宇,顾浩然)
转载注明来源:https://www.xzbu.com/1/view-14847293.htm