您好, 访客   登录/注册

一种改进的基于Jacobi椭圆函数的随机平均法

来源:用户上传      作者:

  摘要: 建立了改进的基于Jacobi椭圆函数的随机平均法,用于预测有界噪声激励作用下硬弹簧和软弹簧系统的随机响应。通过引入基于Jacobi椭圆函数的变换,导出关于响应幅值和激励与响应之间相位差的随机微分方程,应用随机平均原理,将响应幅值近似为一个Markov扩散过程,建立其平均的It随机微分方程。响应幅值的稳态概率密度由相应的简化FokkerPlanckKolmogorov方程解出;进而得到系统位移和速度的稳态概率密度。以DuffingVan der Pol 振子为例,研究了硬刚度及软刚度情形下的随机响应,通过与Monte Carlo数值模拟结果比较证实了此方法的可行性及精度。由于广义调和函数是基于线性系统的精确解,Jacobi椭圆函数是基于非线性系统的精确解,研究结果表明基于Jacobi椭圆函数的随机平均法得到的结果与Monte Carlo模拟方法更接近。因此与基于广义调和函数的随机平均相比,基于Jacobi椭圆函数更加精确,因为它是基于保守的非线性系统。
  关键词: 随机振动; 随机平均; 有界噪声; 硬刚度; 软刚度
  中图分类号: O324; O322  文献标志码: A  文章编号: 1004-4523(2019)03.0444.08
  引 言
  随机平均法是非线性随机系统响应分析的有效方法之一。该方法在保留系统本质非线性特性的同时降低了系统维数,应用平均原理后,系统的慢变过程近似为扩散Markov过程,通过求解相应的FokkerPlanckKolmogorov (FPK)方程得到响应概率密度,随机平均技术基于Khasminskii[12]提出的一些定理,迄今的研究可归为以下5类:标准随机平均法[3]、能量包线随机平均法[47]、拟Hamilton系统随机平均法[811]、基于广义谐和函数的随机平均法[12]、基于椭圆函数的随机平均法[13]。Stratonovich随机平均法可以有效地求解宽带激励下的拟线性随机系统问题。基于能量包络的随机平均,即拟Hamilton系统的随机平均,该方法适用于宽带噪声激励下的单自由度强非线性系统,也可适用于高斯白噪声激励下的多自由度拟Hamilton系统。基于广义谐和函数的随机平均法,可适用于宽带、有界、谐波函数和高斯白噪声联合激励下的强非线性系统。作者之前引入高斯白噪声激励下的基于Jacobi椭圆函数的随机平均法,结果表明它比基于广义调和函数的随机平均具有更高的精度,由于椭圆余弦函数是保守Duffing系统的精确解,因此该方法具有更高精度。
  在研究地震、海浪、风作用的时候往往要考虑随机噪声的影响,所以研究随机激励下非线性系统的问题也引起了很多学者的重视。由于有界噪声在工程中应用非常广泛,因此本文主要研究在有界噪声激励下基于Jacobi椭圆函数的随机平均法。有学者研究了基于广义调和函数Duffing系统硬刚度在有界噪声激励下的响应问题[14]。该方法所采用的广义谐波变换是基于具有时间相关的幅度、初始相位和頻率的三角函数,它是保守线性系统的精确解,但是随着立方刚度非线性的增加,这种解的精度将会变差。椭圆函数是非线性系统的精确解,考虑到基于椭圆函数的随机平均的优点,将该方法扩展到有界噪声情况是适当的,但该问题的解至今没有详细提出。Tien等提出的基于椭圆函数的随机平均[13]是文[1516]的确定性系统的扩展。近几年,Okabe,Rakaric等[1719]提出了改进的基于Jacobi椭圆函数确定平均法,将解表示为Jacobi椭圆函数,从而可用来研究各种弹簧特性的系统。得到了具有各种弹簧性质的强非线性确定性动力系统的高精度周期解,证明了该方法提供了更准确的解决方案[19]。本文把基于Jacobi椭圆函数的平均方法扩展到有界噪声的情况。
  本文推广已有的基于Jacobi椭圆函数的随机平均法,用于研究有界噪声激励下强非线性系统的随机响应。将系统样本响应用Jacobi椭圆正弦函数,余弦函数和delta函数来近似,其中频率和模用幅值表示。通过引入新变量,即施加的激励和系统响应之间的相位差,通过随机平均原理导出二维扩散过程,然后求解相关的FPK方程得到振幅和相位差的平稳联合概率密度函数。以硬刚度和软刚度的Duffing系统为例,通过计算得到的数值结果说明了所提出方法的可行性。
  3 结 论
  本文主要研究了基于Jacobi椭圆函数的随机平均法,并用其研究强非线性系统在有界噪声激励下的随机响应问题。首先引入Jacobi椭圆函数的变换,包含Jacobi椭圆正弦函数、余弦函数及delta函数。导出外共振情形下关于响应幅值和激励与响应的相位差的随机微分方程,应用随机平均原理可以得到一个二维的扩散过程。通过解相应的FPK方程,可以得到系统的稳态概率密度。将此方法应用于具有硬化和软化刚度的有界噪声激励下的Duffing系统。该方法的结果与Monte Carlo模拟结果一致,说明该方法的有效性和准确性。此外,与基于广义谐和函数的随机平均法相比,该方法提供了更准确的结果。
  参考文献:
  [1] Khasminskii R Z. A limit theorem for the solution of differential equations with random righthand sides[J]. Theory of Probability and Its Applications,1966, 11:390405.
  [2] Khasminskii R Z.On the averaging principle for stochastic differential equations[J]. Kibernetika,1968, 4:260299.
  [3] Stratornovich R L. Topics in the Theory of Random Noise[M]. New York:Gordon Breach,1967.   [4] Roberts J B. The energy envelope of a randomly excited nonlinear oscillator[J]. Journal of Sound and Vib ration,1978, 60:177185 .
  [5] Roberts J B, Spanos P D. Stochastic averaging: An approximate method of solving random vibration problems[J]. Internationd Journal of NonLinear Mechanics,1986, 21:111134.
  [6] Zhu W Q, Lin Y K. Stochastic averaging of energy envelope[J]. Journal of Engineering Mechanics,1991, 117:18901905.
  [7] Wang Y, Ying Z G, Zhu W Q. Stochastic averaging of energy envelope of Preisach hysteretic systems[J]. Journal of Sound and Vibration,2009, 321:976993.
  [8] Zhu W Q. Nonlinear stochastic dynamics and control in Hamiltonian formulation[J]. Applied Mechanics Reviews, 2006, 59:230248.
  [9] Zhu W Q, Yang Y Q. Stochastic averaging of quasinonintegrableHamiltonian systems[J]. Journal of Applied Mechanis, ASME,1997, 64:157164.
  [10] Zhu W Q, Huang Z L, Yang Y Q. Stochastic averaging of quasiintegrable Hamiltonian systems[J]. Journal of Applied Mechanics, ASME,1997, 64:975984.
  [11] Zhu W Q, Huang Z L, Suzuki Y. Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems[J]. International Journal of NonLinear Mechanics, 2002, 37:419437.
  [12] Huang Z L, Zhu W Q, Suzuki Y. Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations[J]. Journal of Sound and Vibration, 2000, 238:233256.
  [13] Tien W M, Namachchivaya N S, Coppola V T. Stochastic averaging using elliptic functions to study nonlinear stochastic systems[J]. Nonlinear Dynamics,1993, 4:373387.
  [14] Huang Z L, Zhu W Q, Ni Y Q, et al. Stochastic averaging of strongly nonlinear oscillators under bonded noise excitations[J]. Journal of Sound and Vibration,2002, 254:24567.
  [15] Coppola V T, Rand R H. Averaging using elliptic functions: Approximation of limit cycles[J]. Acta Mechanica,1990, 81:125142.
  [16] Coppola V T. Averaging of strongly nonlinear oscillators using elliptic functions[D]. Ithace,NY: Cornell University,1989.
  [17] Okabe T, Kondou T, Ohnishi J. Elliptic averaging methods using the sum of Jacobian elliptic delta and zeta functions as the generating solution[J]. International Journal of NonLinear Mechanics,2011, 46:159169.
  [18] Rakaric Z, Kovacic I. An elliptic averaging method for harmonically excited oscillators with a purely nonlinear nonnegative realpower restoring force[J]. Communications in Nonlinear Science and Numerical Simulation,2013, 18:18881901.   [19] Okabe T, Kondou T. Improvement to the averaging method using the Jacobian elliptic function[J]. Journal of Sound and Vibration,2009, 320:339364.
  [20] Holmes P J. A nonlinear oscillator with a strange attractor[J]. Philosophical Transactions of the Royal Society London, Series AMathematical and Physical Sciences,1979, 292(1394):419448.
  [21] Lin Y K, Cai G Q. Probabilistic Structural Dynamics: Advanced Theory and Applications[M]. New York:McGrawHill, 1995.
  [22] Anderson T J, Nayfeh A H, Balachandran B. Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam[J]. Journal of Vibration Acoustics, ASME,1996, 118:2127.
  [23] Feng Z H, Lan X J, Zhu X D. Principal parametric resonances of a slender cantilever beam subject to axial narrowband random excitation of its base[J]. International Journal of NonLinear Mechanics,2007, 42:11701185.
  [24] 方 同.工程随机振动[M].北京:国防工业出版社,1995.
  [25] 金肖玲.多自由度强非线性随机系统的响应与稳定性研究[D].杭州: 浙江大学,2009.
  Abstract: A novel stochastic averaging technique is proposed to evaluate the random responses of nonlinear systems with cubic stiffness to bounded noises. By introducing a transformation based on the Jacobian elliptic functions, the stochastic differential equations with respect to the system amplitude and the phase difference between the imposed excitation and the system response are derived. Applying the stochastic averaging principle yields the associated It stochastic differential equations. Then, the stationary joint probability density of the amplitude and the phase difference is obtained by solving the corresponding FokkerPlanckKolmogorov equation. Numerical results for a representative example with hardening and softening stiffness are given to verify the feasibility and accuracy of the proposed procedure. Compared to the stochastic averaging method based on generalized harmonic functions, the present procedure is of higher accuracy as it is based on the exact solution of the associated conservative nonlinear system.
  Key words: stochastic vibration; stochastic averaging; bounded noise; hardening stiffness; softening stiffness
  作者簡介: 徐文俊(1981),男,硕士,副教授。电话:(0570)8068262; Email: xwjaaa@126.comZ ··y^
转载注明来源:https://www.xzbu.com/8/view-14954263.htm