您好, 访客   登录/注册

如何搞好新课标下的数学概念课教学

来源:用户上传      作者: 吕媛媛

  数学概念是构建数学理论大厦的基石,是导出数学定理和数学法则的逻辑基础,是提高解题能力的前提,是数学学科的灵魂和精髓。数学概念教学是“双基”教学的核心,是数学教学的重要组成部分,必须引起足够重视。
  高中数学课程标准指出:教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学具有高度抽象的特点,注重体现基本概念的来龙去脉,因此在教学中,教师要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
  长期以来,由于受应试教育的影响,不少教师重解题、轻概念,造成数学概念与解题脱节的现象。有些教师仅仅把数学概念看作一个名词,概念教学就是对概念作解释,要求学生记忆。而没有看到像函数、向量这样的概念,本质是一种数学观念,是一种处理问题的数学方法。一节“概念课”教完了,也就完成了它的历史使命,剩下的是赶紧解题,造成学生对概念含糊不清,一知半解,不能很好地理解和运用概念,严重影响了学生的解题质量。如何搞好新课标下的数学概念课教学?
  一、概念教学中,要根据阶段教学要求,准确把握教学尺度
  高中数学新课程标准对每个年级、每个阶段的教学都提出了明确的教学要求,教师一定要根据教材的编排意图和阶段教学要求,准确把握教学尺度,帮助学生形成正确、清晰的概念。
  二、在挖掘新概念的内涵与外延的基础上理解概念
  新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。教师通过新旧概念比较分析,能使学生发现、理解新旧概念间的联系,从而掌握概念的方式叫概念同化。因此,在概念教学中教师不能忽视“概念同化”这一获取概念的主要形式。随着学生年级的升高,已学知识的积累,“概念同化”应逐步成为学生获取概念的主要形式。
  三、概念教学不能忽视联系实际
  高中生学习数学,常常要通过形象、具体、直观的感性材料,逐步抽象概括出数学概念,因此教师不能忽视联系实际这一环节。如在起始概念教学中,教师可联系学生日常生活实际,通过列举学生熟悉的具体事物引入概念;在教学过程中,重视挖掘与生活实际联系的因素,使学生掌握概念,并能够应用概念解决生活中的数学问题。
  四、对不同的概念,要采取不同的方法
  有时教师只需在例题教学中实施概念教学。比如:相关关系的概念是描述性的,不必追求形式化上的严格,建议采用案例教学法。对比函数关系,重点突出相关关系的两个本质特征在:关联性和不确定性。关联性是指当一个变量变化时,伴随另一个变量有一定的变化趋势;不确定性是指当一个变量取定值时,与之相关的变量的取值仍具有随机性。因为有关联性,才有研究的必要性。因为其不确定性,从少量的变量观测值,很难估计误差的大小,所以我们必须对变量进行大量的观测。但每个观测值都有一定误差,为了消除误差的影响,揭示变量间的本质联系,我们就必须用统计分析方法。
  教师可先介绍概念产生的背景,然后通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,提炼出本质属性。如:“异面直线”概念的教学,教师可以在长方体模型或图形中(或现有的教室中),引导学生找到既不相交又不平行的两条直线,直接给出像这样的两条直线叫“异面直线”。然后教师画出一些看起来是异面直线其实不是异面直线的图,以完善异面直线的概念,再给出简明、准确、严谨的定义。最后教师可让学生在各种模型中找出、找准所有的异面直线,以体验概念的发生发展过程。
  有时教师可联系其它概念,借助多媒体等一些辅助设施进行直观教学。比如:导数是微积分的一个核心概念,它有着极其丰富的背景和广泛的应用。在高等数学里,导数定义为自变量的改变量趋于零时,函数的改变量和相应的自变量的改变量之比的极限(倘若存在),涉及有限到无限的辩证思想,这样的数学概念是比较抽象的,这与初等数学在知识内容、思想方法等方面有较大的跨度,学生刚接触导数概念,往往把导数作为一种运算规则来记忆,却没有理解导数概念的内涵和基本思想。教师可在导数教学前要加强变化率的实例分析;利用多媒体的直观性,帮助学生理解动态无限趋近的思想;利用APOS理论指导导数概念教学。
  有时教师可在情景设计、意义建构、例题讲解、课堂小结整个教学环节中实施。比如“函数”一课。我们知道函数是一个核心概念,函数思想是一种核心的数学思想方法。一位教师用三个实例(以解析式、图像、表格三种形式给出)设计情景,以小组讨论的形式让学生自己归纳出函数概念及三要素,又用四个例题层层深入地加深对概念的理解。整堂课紧紧围绕函数概念和思想方法进行教学,有“简约”而“深刻”的效果。
  概念是人们对客观事物在感性认识的基础上经过比较、分析、综合、概括、判断、抽象等一系列思维活动,逐步认识到它的本质属性以后才形成的,数学概念也不例外。因此,数学概念的产生和发展,人们对数学概念的认识都要经历由实践、认识、再实践、再认识的不断深化的过程。学生要形成、理解和掌握基本的数学概念也是一个十分复杂的认识过程,这就决定了对较难理解的数学概念的教学不能一步到位,而是要分阶段进行。
  五、新概念的巩固与运用
  教师应用精选实例、设计巧题、加强练习等方法巩固和运用概念,使学生通过概念的掌握与运用,最终掌握数学思想方法。学生认识和形成概念,理解和掌握之后,巩固概念是一个不可缺少的环节。
  巩固的主要手段是多练习、多运用,只有这样才能沟通概念、定理、法则、性质、公式之间的内存联系。教师可以选择概念性、典型性的习题组,加强概念本质的理解,使学生最终理解和掌握数学思想方法。如学习了“椭圆的第一定义及第二定义”概念之后,教师可举例练习,通过解题巩固原有概念。
  要使学生牢固地掌握数学概念,教师必须通过解题、反复运用这些概念,才能使学生在认识上获得巩固加深,培养和提高他们运用概念,分析问题和解决问题的能力。教师还应利用小结加深学生对概念的掌握。
  教学中,教师要引导学生善于总结,从一个概念出发,把关联概念、派生概念串连成线,相互对比。这样既直观形象,又有利于发展学生的创造性思维。


转载注明来源:https://www.xzbu.com/9/view-979814.htm