您好, 访客   登录/注册

邻苯二甲酸酯的微生物降解研究进展

来源:用户上传      作者:

  摘 要:邻苯二甲酸酯(Phthalic Acid Esters,PAEs)的广泛应用引起了严重的环境污染问题,其环境雌激素效应和“三致”毒性直接威胁生态环境安全及人体健康。该文总结了PAEs的污染及毒性以及PAEs高效降解菌、细菌对PAEs的降解途径,探讨了PAEs降解菌在环境修复中的问题并提出了应对措施,为PAEs污染环境的生物修复未来发展方向提供参考。
  关键词:邻苯二甲酸酯;微生物降解;代谢途径;生物修复
  中图分类号 X131   文献标识码 A 文章编号 1007-7731(2020)18-0024-05
  邻苯二甲酸酯(Phthalic Acid Esters,PAEs)又名酞酸酯,是一类主要由人工合成的有机化合物,常见的PAEs及代谢产物如表1所示。PAEs被广泛用作塑化剂及其他化工产品中的添加剂,在土壤、水体、空气等环境中广泛分布,成为普遍的环境污染物之一。PAEs在环境中自然降解极其缓慢,属于典型的持久性有机污染物(Persistent Organic Pollutants,POPs),且具有环境雌激素效应、“三致效应”(致突变、致畸、致癌),被称为第2个“PCB”类的污染物。鉴于PAEs的严重污染和生物毒理效应,目前PAEs污染及修复途径受到全球关注。
  1 PAEs的污染及危害
  工业生产中,PAEs被用作工业溶剂、化工产品的添加剂、塑化剂,如农药、地膜、油漆中的添加剂或塑料制品中的塑化剂[1]。塑化剂是PAEs的主要用途,PAEs也是使用量最大的塑化剂。PAEs与聚烯烃类塑料基质以氢键或范德华力等非共价键相互作用,在塑料的生产、使用及废弃处理过程中,PAEs从塑料中渗漏到环境中[2],对空气、水体、土壤、食品等造成严重污染。环境中的PAEs污染主要是DBP和DEHP。空气中的PAEs主要来源于塑料、油漆、家具等含有PAEs材料的物质挥发,受人类生产、生活活动的影响较大。通常情况下,城市中心空气中的PAEs浓度高于郊区,室内高于室外[3,4]。空气中的PAEs浓度还受到环境温度等因素的影响,在印度赖布尔,春季和冬季大气中PAEs的浓度高于夏季,可能与夏季降雨和较强的光化学反应有关[5]。河流及沉积物中的PAEs有多种来源,包含携带空气中PAEs的雨水、PAEs污染的工业和生活污水、垃圾渗滤液等,目前全球的很多河流及沉积物中都存在PAEs,且DEHP浓度远高于环境风险限定值(Environmental risk limits,ERLs)(0.19μg/L)。在很多国家和地区的饮用水中也检测到了PAEs,长期暴露于饮用水的PAEs将严重影响人体健康。土壤中的PAEs污染主要来源于水体中PAEs的聚集、大气中PAEs的沉积、污水灌溉、污染的堆肥、农药和化肥的施用等。农田土壤中的PAEs含量高于非耕作土壤,表明农业生产活动是导致农田PAEs污染的主要途径,温室大棚薄膜、农田地膜、农药和化肥等含有PAEs的农业生产资料的使用是农田PAEs污染的主要来源[6]。由此可见,PAEs在自然环境中广泛分布、大量累积,严重威胁生态环境安全及动植物健康。
  人体通过饮用水、空气、食品等途径直接暴露于PAEs,人体每天通过食物摄取的DEHP约有25?g[7]。PAEs还能通过水体、土壤被植物吸收,进入食物链,最终迁移到人体内。此外,个人护理用品、化妆品和玩具也是人体摄取PAEs的重要途径。PAEs 是一类环境雌激素,能与细胞核受体、激素或异源物质的受体等相互作用,进而干扰生物体的生长、代谢、发育等生理过程,还具有致突变、致畸和致癌的毒理效应。美国将DMP、DEP、DBP、DEHP、DOP、BBP列为优先控制的有毒污染物,我国将DMP、DBP和DEHP确定为优先控制污染物。目前关于DEHP毒理效应的研究较多,尤其是生殖毒性、遗传毒性、肝脏毒性及致癌的研究。DEHP能造成大鼠类固醇生成减少、胚胎睾丸中的生殖细胞缺失、性别分化异常、精子畸形率增加和精液体积减少[8]。大量研究表明,DEHP能导致大鼠和小鼠的肝脏癌变,但对于人的肝癌和DEHP暴露的关系还缺乏流行病学的证据[9]。DEHP还是男童生殖发育障碍及内分泌异常的重要原因[10]。DEHP可干扰昆虫的热休克基因表达,高浓度DEHP作为蜕皮激素受体(Ecdysone Receptor,EcR)表达的拮抗剂,影响昆虫变态发育[11]。DEHP也影响植物的生长、发育等过程,如造成洋葱根尖细胞后期染色体分离失败、有丝分裂指数下降[12],影响蚕豆微核发生率和DNA多态性,引起蚕豆幼苗急性氧化损伤和遗传毒性效应[13]。DEHP的代谢产物MEHP比DEHP的毒性更强,能影响炎症系统[14]、诱导精子中活性氧(reactive oxygen species,ROS)水平升高和DNA損伤,并导致细胞凋亡[15]。相关研究表明,DEHP或其代谢产物的毒性都是通过过氧化物酶体增殖物激活受体(PPAR)信号通路来介导的,改变基因表达,最终表现为生理毒性[16]。DEHP和MEHP能结合PPAR的3个亚型(PPARα、PPARβ和PPARγ)并调节其活性[17]。
  2 PAEs的降解微生物
  PAEs侧链基团决定了PAEs的种类,随着侧链基团的增大,PAEs的辛醇—水分配系数的对数值(lgKow)也增大,表明侧链越长,PAEs的疏水性越强,越难被降解。除了PAEs的分子结构,PAEs的降解速率还与温度、光照、pH等环境因素有关。自然条件下PAEs能进行非生物降解,如光化学降解和水解。然而,非生物降解速率极慢,DBP和DEHP的非生物降解的半衰期分别可达50~360d和390~1600d[18]。非生物降解通常不能将PAEs彻底矿化,可能生成毒性更高的中间产物,如MEHP或其他自由基。PAEs的生物降解由一系列酶促反应来完成,降解速率快,能彻底矿化PAEs,不产生二次污染,是一种环境友好型的降解途径。目前已报道一些细菌、真菌、藻类都可以降解PAEs,其中以细菌为主。Aspergillus parasiticus、Fusarium subglutinans和Penicillium funiculosum等真菌可以将血浆袋子的DEHP完全降解[19],DEHP诱导Fusarium culmorum产生8种酯酶异构体,这些酯酶可能参与DEHP降解的不同阶段,将DEHP彻底矿化[20]。Aspergillus niger能将DMP降解为MMP、PA和PCA,并最终将DMP矿化[21]。微藻Chlorella pyrenoidosa降解DMP的效率受到无机碳的影响,无机碳初始浓度提高会显著促进DMP的降解[22],另一种微藻Closterium lunula降解DMP的情况与此相似[23]。   目前已从农田土壤、工业污水、活性污泥等环境样品中分离到许多能降解PAEs的细菌,这些细菌主要来自于Sphingomonas[24]、Gordonia[25,26]、Rhodococcus[27]、Arthrobacter[28]、Bacillus[29]等菌属(表2)。细菌对PAEs的降解程度反映了其降解性能及环境修复应用潜力,大多数细菌能完全矿化PAEs,但有些细菌只能将PAEs降解为邻苯二甲酸单酯或PA。Acinetobacter sp. strain M673能依次水解DBP、DEP、DHP、DEHP、DOP等多种PAEs的2个酯键,生成相应的单酯、PA,但是不能在含PAEs或PA的无机盐培养基上生长,即不能以PAEs或PA作为唯一碳源和能源,可能是由于菌株M673缺少降解PA的功能基因[30]。Camelimonas sp.M11与菌株M673相似,能水解DBP、DEP、DPeP等PAEs,生成相应的单酯,但不能在含PAEs单酯及PA的无机盐培养基上生长,表明单酯是PAEs降解的终产物[31]。Rhodococcus jostii RHA1能水解DMP、DEP、DPrP、DBP、DHP和DEHP,依次生成对应的单酯、PA,能在含MMP、MBP、MHP、MEHP及PA的无机盐培养基上生长,但是在含大多数PAEs的无机盐培养基上不能生长。这表明PAEs可能会抑制PA的代谢过程,导致在PAEs存在时PA不能继续降解,无法为菌株RHA1提供能量[32]。这些细菌能将PAEs转化为毒性较小的PA,在环境修复中发挥重要作用,也可与其他菌株协同作用将PAEs彻底降解。Gordonia sp.JDC-2可以将DOP降解为PA,PA作为终产物进行累积[33]。Arthrobacter sp.JDC-32不能降解DOP,但是可以将PA代谢。将这2种菌株共培养,菌株间通过协同作用可将DOP彻底降解。
  细菌降解环境污染物的底物谱范围、降解速率、环境适应性等也反映了其环境修复的潜力。PAEs污染的环境通常较复杂,如存在多种PAEs、过酸或过碱,使得微生物修复PAEs污染更加困难。在实验室条件下,目前报道的PAEs降解菌大都能降解多种PAEs,在较宽的温度或pH范围内可以高效降解PAEs。本实验室分离纯化的Mycobacterium sp.YC-RL4能在20~50℃、pH6.0~10.0条件下高效降解多种PAEs(DEHP、DBP、DEP、DMP、DCHP)[39]。Rhodococcus ruber YC-YT1在pH4.0~10.0、10~50℃和1~120g/L NaCl条件下都能快速降解PAEs,其降解底物包括DMP、DEP、DPrP、DBP、DPeP、DHP、DHpP、DEHP、DOP、DNP、DDP、DCHP和BBP[40]。分离自活性污泥的Rhodococcus pyridinivorans XB能以DMP、DEP、DBP、DEHP、PA和原儿茶酸(protocatechuic acid,PCA)等作为唯一碳源,在48h内降解98%的DEHP(200mg/L),在5d内降解98%的DMP、DEP、DBP(800mg/L)[37]。从垃圾填埋场土壤分离的PAEs降解菌Agromyces sp. MT-O能利用DMP、DEP、DBP、DOP和DEHP,在7d内将1000mg/L的DEHP降解80%[41]。目前虽然在实验室条件下研究了这些PAEs降解菌的优越的降解能力和环境适应能力,但自然环境的复杂性对菌株的环境修复应用提出了较大的挑战。
  3 PAEs的降解途径
  在有氧或厌氧条件下,细菌可通过一系列酶催化PAEs降解。细菌对PAEs的有氧降解速率高于厌氧降解速率,目前分离筛选的PAEs降解菌主要是有氧降解菌。PAEs的有氧降解受到微生物种类及温度、pH等环境因素的影响,其他共代谢的碳源也可促进PAEs降解,而高浓度PAEs或中间代谢产物可抑制PAEs降解[42-43]。PAEs的有氧或厌氧降解过程大致可分为2个阶段:PAEs水解以及PA开环、矿化。PAEs的疏水性强,侧链越长,疏水性越强,水解反应越困难,酯键水解是其降解过程中最重要的步骤,也是降解的限速步骤。PAEs的2个酯键通常由2个不同的水解酶依次作用进行水解[44],但也有报道1个酯酶具有水解PAEs2个酯键的功能[45]。在水解酶的作用下,PAEs的2个酯键依次断裂,生成单酯、PA。这是PAEs的有氧或厌氧降解的共同起始步骤,大多数细菌以此方式起始PAEs降解过程。目前也发现了PAEs的其他降解途径,如有的细菌将DEP、DMP直接水解为PA,此过程中没有单酯生成[46];还有一些PAEs如DOP,带有较长侧链,在起始降解过程中,Gordonia sp.JDC-2先进行β-氧化,将PAEs的侧链逐次移除1个-CH2-基团,生成的DEP通过转酯、脱酯反应降解为PA[33];在降解DEP过程中,Sphingobium yanoikuyae SHJ进行转酯或脱甲基反应,将DEP转化为邻苯二甲酸乙基甲基酯(ethyl methyl phthalate,EMP),EMP水解为MEP,MEP经转酯或脱甲基反应生成MMP[47],MMP再水解为PA。
  PA是芳香族化合物共同的中心代谢产物,细菌在有氧或厌氧条件下都可降解PA,但代谢途径有所差异。在有氧条件下,在pht基因簇的作用下,PA经过加氧、脱氢、脱羧,转化为PCA。PCA也是芳香族化合物共同的中心代谢产物,经过邻位裂解途径(ortho-cleavage pathway)或间位裂解途径(meta-cleavage pathway),代谢产物进入三羧酸循环,PCA被矿化。pht基因簇一般以操纵子结构存在,革兰氏阳性菌和陰性菌的pht基因簇的基因种类、数目等有所差异。革兰氏阳性菌的pht基因簇由phtB、phtAa、phtAb、phtAc、phtAd、phtC、phtR组成,分别编码3,4-二氢-3,4-二羟基邻苯二甲酸脱氢酶、邻苯二甲酸3,4-双加氧酶大亚基、邻苯二甲酸3,4-双加氧酶小亚基、铁氧还蛋白、铁氧还蛋白还原酶、3,4-二羟基邻苯二甲酸脱羧酶、调控蛋白。phtAaAbAcAd编码的双加氧酶复合体起始PA的代谢过程,催化PA加氧,生成3,4-二氢-3,4-二羟基邻苯二甲酸。phtB编码的脱氢酶催化3,4-二氢-3,4-二羟基邻苯二甲酸,生成3,4-二羟基邻苯二甲酸,后者在phtC的作用下,脱羧生成PCA。首次报道的pht基因簇来自Arthrobacter keyseri 12B,其遗传机制的研究较为透彻[48]。菌株12B的pht操纵子位于质粒上,以phtBAaAbAcAdCR排列,Gordonia sp.YC-JH1[44]和Gordonia sp.HS-NH1[49]中的pht操纵子也以此方式排列,而Terrabacter sp.DBF63中的pht基因簇以phtAaAbBAcAdCR排列[50]。Mycobacterium vanbaalenii PYR-1的pht基因簇缺少编码3,4-二羟基邻苯二甲酸脱羧酶的基因phtC[51],不能催化3,4-二羟基邻苯二甲酸生成PCA,整个基因簇以phtRAaAbBAcAd形式存在。革兰氏阴性菌的PA代谢过程与革兰氏阳性菌相似,但是PA加氧酶为邻苯二甲酸4,5-双加氧酶。pht基因簇由pht1、pht2、pht3、pht4、pht5组成,分别编码转运蛋白、邻苯二甲酸4,5-双加氧酶还原酶、邻苯二甲酸4,5-双加氧酶、4,5-二氢-4,5-二羟邻基苯二甲酸脱氢酶、4,5-二羟基邻苯二甲酸脱羧酶,在这些酶的作用下,PA转化为PCA。Burkholderia cepacia DBO1中的pht基因簇由pht2、pht15和pht34转录单位组成[52],Pseudomonas putida NMH102-2中的pht基因簇形成操纵子pht12345[53]。PAEs的厌氧降解研究较少,在厌氧条件下,PAEs酯键依次水解生成PA,PA脱羧转化为苯甲酸(benzoic acid,BA),BA加氢、加氧后开环,生成CO2、H2和乙酸,乙酸最后转化为终产物甲烷[54]。   4 討论与展望
  PAEs是应用广泛、使用量大的化工原料,也是污染严重、毒性较强、降解困难的环境污染物。目前有大量的PAEs降解菌从环境样品中分离获得,也克隆了PAEs降解基因,为PAEs污染环境的生物修复提供了宝贵的菌株资源和基因资源。然而,PAEs降解菌或降解基因在环境修复中的应用还很少,究其原因有以下几个方面:(1)PAEs污染环境的环境因素较复杂,如多种有机污染物、重金属、酸性或碱性较强,这些都会影响PAEs降解菌的生存和降解功能的发挥;(2)实际环境中的PAEs浓度较低,通常在mg/L的水平以下,比实验室条件下研究的菌株降解PAEs的浓度低很多,因此环境中低浓度的PAEs可能无法激活菌株中PAEs降解基因的表达;(3)PAEs水解酶及其他降解酶的催化机制研究较少,缺少分子改造的理论基础,从而也限制了环境修复的应用。在今后的研究中,应从PAEs降解菌株及降解酶的环境适应性的角度去深入研究,并结合工程学的方法,将降解菌和降解酶应用到PAEs污染环境的修复中。
  参考文献
  [1]Koniecki D,Wang R,Moody R P,et al. Phthalates in cosmetic and personal care products:concentrations and possible dermal exposure[J].Environmental Research,2011,111(3):329-336.
  [2]Clausen P A,Liu Z,Kofoed-Sorensen V,et al.Influence of temperature on the emission of di-(2-ethylhexyl) phthalate(DEHP) from PVC flooring in the emission cell FLEC[J]. Environmental Science & Technology,2012,46(2):909-915.
  [3]Guo Y,Kannan K.Comparative assessment of human exposure to phthalate esters from house dust in China and the United States[J].Environmental Science & Technology,2011,45(8):3788-3794.
  [4]Zhang L,Wang F,Ji Y,et al.Phthalate esters(PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin,China[J]. Atmospheric Environment,2014,85:139-146.
  [5]Deshmukh D K,Tsai Y I,Deb M K,et al. Characterization of Dicarboxylates and Inorganic Ions in Urban PM10 Aerosols in the Eastern Central India[J].Aerosol and Air Quality Research,2012,12(4):592-607.
  [6]Hu X Y,Wen B,Shan X Q. Survey of phthalate pollution in arable soils in China[J].Journal of Environmental Monitoring,2003,5(4):649-653.
  [7]Nakamiya K,Hashimoto S,Ito H,et al.Microbial treatment of bis(2-ethylhexyl) phthalate in polyvinyl chloride with isolated bacteria[J].Journal of Bioscience and Bioengineering,2005,99(2):115-119.
  [8]Zhang Y H,Zheng L X,Chen B H. Phthalate exposure and human semen quality in Shanghai:a cross-sectional study[J]. Biomedical and Environmental Sciences,2006,19(3):205-209.
  [9]Rusyn I,Corton J C.Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate[J]. Mutation Research,2012,750(2):141-158.
  [10]Main K M,Mortensen G K,Kaleva M M,et al.Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age[J].Environmental Health Perspectives,2006,114(2):270-276.
  [11]Planello R,Herrero O,Martinez-Guitarte J L,et al. Comparative effects of butyl benzyl phthalate(BBP) and di(2-ethylhexyl) phthalate(DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system,the stress response and ribosomes[J].Aquatic Toxicology,2011,105(1-2):62-70.   [12]Herrero O,Pérez Martín J M,Fernández Freire P,et al. Toxicological evaluation of three contaminants of emerging concern by use of the Allium cepa test[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2012,743(1-2):20-24.
  [13]Qing C,Nana G,Yuduo Z,et al.Effects of Di(2-Ethylhexyl) Phthalate on Root Tips of Vicia faba Seedlings:International Conference on Bioinformatics and Biomedical Engineering[C]//ICBBE,2009.
  [14]Jepsen K F,Abildtrup A,Larsen S T. Monophthalates promote IL-6 and IL-8 production in the human epithelial cell line A549[J].Toxicology in Vitro,2004,18(3):265-269.
  [15]Choucroun P,Gillet D,Dorange G,et al.Comet assay and early apoptosis[J].Mutation Research,2001,478(1-2):89-96.
  [16]Desvergne B,Feige J N,Casals-Casas C.PPAR-mediated activity of phthalates:A link to the obesity epidemic?[J]. Molecular and Cellular Endocrinology,2009,304(1-2):43-48.
  [17]Singh S,Li S S. Phthalates:toxicogenomics and inferred human diseases[J].Genomics,2011,97(3):148-157.
  [18]Lertsirisopon R,Soda S,Sei K,et al. Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation[J].Journal of Environmental Sciences,2009,21(3):285-290.
  [19]Pradeep S,Benjamin S. Mycelial fungi completely remediate di(2-ethylhexyl)phthalate,the hazardous plasticizer in PVC blood storage bag[J].Journal of Hazardous Materials,2012,235-236:69-77.
  [20]Gonzalez-Marquez A,Loera-Corral O,Santacruz-Juarez E,et al. Biodegradation patterns of the endocrine disrupting pollutant di(2-ethyl hexyl) phthalate by Fusarium culmorum[J].Ecotoxicology and Environmental Safety,2019,170:293-299.
  [21]Pradeepkumar S,Karegoudar T B. Metabolism of dimethylphthalate by Aspergillus niger[J].Journal of Microbiology and Biotechnology,2000,10:518-521.
  [22]Yan H,Pan G,Liang P L. Effect and mechanism of inorganic carbon on the biodegradation of dimethyl phthalate by Chlorella pyrenoidosa[J].Journal of Environmental Science and Health,Part A,2002,37(4):553-562.
  [23]Yan H,Pan G. Increase in biodegradation of dimethyl phthalate by Closterium lunula using inorganic carbon[J]. Chemosphere,2004,55(9):1281-1285.
  [24]Mahajan R,Verma S,Kushwaha M,et al.Biodegradation of dinbutyl phthalate by psychrotolerant Sphingobium yanoikuyae strain P4 and protein structural analysis of carboxylesterase involved in the pathway[J].International Journal of Biological Macromolecules,2019,122:806-816.   [25]Fan S,Wang J,Yan Y,et al. Excellent Degradation Performance of a Versatile Phthalic Acid Esters-Degrading Bacterium and Catalytic Mechanism of Monoalkyl Phthalate Hydrolase[J].International Journal of Molecular Sciences,2018,19(9):2803.
  [26]Wang Y,Zhan W,Ren Q,et al.Biodegradation of di-(2-ethylhexyl) phthalate by a newly isolated Gordonia sp. and its application in the remediation of contaminated soils[J].Science of the Total Environment,2019,689:645-651.
  [27]WANG J,ZHANG M Y,CHEN T,et al.Isolation and Identification of a Di-(2-Ethylhexyl) Phthalate-Degrading Bacterium and Its Role in the Bioremediation of a Contaminated Soil[J]. Pedosphere,2015,25(2):202-211.
  [28]Wen Z,Gao D,Wu W. Biodegradation and kinetic analysis of phthalates by an Arthrobacter strain isolated from constructed wetland soil[J].Applied Microbiology and Biotechnology,2014,98(10):4683-4690.
  [29]Feng N,Yu J,Mo C,et al.Biodegradation of di-n-butyl phthalate(DBP) by a novel endophytic Bacillus megaterium strain YJB3[J].Science of The Total Environment,2018,616-617:117-127.
  [30]Wu J,Liao X,Yu F,et al.Cloning of a dibutyl phthalate hydrolase gene from Acinetobacter sp. strain M673 and functional analysis of its expression product in Escherichia coli[J].Applied Microbiology and Biotechnology,2013,97(6):2483-2491.
  [31]Chen X,Zhang X,Yang Y,et al.Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase[J].Biodegradation,2015,26(2):171-182.
  [32]Hara H,Stewart G R,Mohn W W. Involvement of a Novel ABC Transporter and Monoalkyl Phthalate Ester Hydrolase in Phthalate Ester Catabolism by Rhodococcus jostii RHA1[J].Applied and Environmental Microbiology,2010,76(5):1516-1523.
  [33]Wu X,Liang R,Dai Q,et al.Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge[J].Journal of Hazardous Materials,2010,176(1-3):262-268.
  [34]Zeng P,Moy B Y,Song Y,et al. Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic-acid-degrading aerobic granules[J].Applied Microbiology and Biotechnology,2008,80(5):899-905.
  [35]Jin D,Bai Z,Chang D,et al. Biodegradation of di-n-butyl phthalate by an isolated Gordonia sp. strain QH-11:Genetic identification and degradation kinetics[J].Journal of Hazardous Materials,2012,221-222:80-85.   [36]Nishioka T,Iwata M,Imaoka T,et al. A Mono-2-Ethylhexyl Phthalate Hydrolase from a Gordonia sp. That Is Able To Dissimilate Di-2-Ethylhexyl Phthalate[J].Applied and Environmental Microbiology,2006,72(4):2394-2399.
  [37]Zhao H,Hu R,Chen X,et al. Biodegradation pathway of di-(2-ethylhexyl) phthalate by a novel Rhodococcus pyridinivorans XB and its bioaugmentation for remediation of DEHP contaminated soil[J].Science of The Total Environment,2018,640-641:1121-1131.
  [38]Navacharoen A,Vangnai A S. Biodegradation of diethyl phthalate by an organic-solvent-tolerant Bacillus subtilis strain 3C3 and effect of phthalate ester coexistence[J].International Biodeterioration & Biodegradation,2011,65(6):818-826.
  [39]Ren L,Jia Y,Ruth N,et al. Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples[J].Environmental Science and Pollution Research,2016,23(16):16609-16619.
  [40]Yang T,Ren L,Jia Y,et al.Biodegradation of Di-(2-ethylhexyl) Phthalate by Rhodococcus ruber YC-YT1 in Contaminated Water and Soil[J].International Journal of Environmental Research and Public Health,2018,15(5):964.
  [41]Zhao H M,Du H,Lin J,et al. Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil[J].Science of the Total Environment,2016,562:170-178.
  [42]Liao C S,Chen L C,Chen B S,et al.Bioremediation of endocrine disruptor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri[J].Chemosphere,2010,78(3):342-346.
  [43]Yuan S Y,Huang I C,Chang B V. Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment[J].Journal of Hazardous Materials,2010,184(1-3):826-831.
  [44]Fan S,Wang J,Li K,et al. Complete genome sequence of Gordonia sp. YC-JH1,a bacterium efficiently degrading a wide range of phthalic acid esters[J].Journal of Biotechnology,2018,279:55-60.
  [45]Ding J,Wang C,Xie Z,et al. Properties of a Newly Identified Esterase from Bacillus sp. K91 and Its Novel Function in Diisobutyl Phthalate Degradation[J].Plos one,2015,10(3):e119216.
  [46]Jackson M A,Labeda D P,Becker L A. Isolation for bacteria and fungi for the hydrolysis of phthalate and terephthalate esters[J].Journal of Industrial Microbiology,1996,16(5):301-304.
  [47]Wang Y,Liu H,Peng Y E,et al. New pathways for the biodegradation of diethyl phthalate by Sphingobium yanoikuyae SHJ[J].Process Biochemistry,2018,71:152-158.   [48]Eaton R W. Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B[J].Journal of Bacteriology,2001,183(12):3689-3703.
  [49]Li D,Yan J,Wang L,et al.Characterization of the phthalate acid catabolic gene cluster in phthalate acid esters transforming bacterium-Gordonia sp. strain HS-NH1[J].International Biodeterioration & Biodegradation,2016,106:34-40.
  [50]Habe H,Miyakoshi M,Chung J,et al. Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63[J].Applied Microbiology and Biotechnology,2003,61(1):44-54.
  [51]Stingley R L. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1[J]. Microbiology,2004,150(11):3749-3761.
  [52]Chang H,Zylstra G J. Novel Organization of the Genes for Phthalate Degradation from Burkholderia cepacia DBO1[J]. Journal of Bacteriology,1998,180(24):6529-6537.
  [53]Nomura Y,Nakagawa M,Ogawa N,et al. Genes in PHT Plasmid Encoding the Initial Degradation Pathway of Phthalate in Pseudomonas putida[J].Journal of Fermentation and Bioengineering,1992,74(6):333-344.
  [54]Kleerebezem R,Hulshoff P L,Lettinga G. Anaerobic degradation of phthalate isomers by methanogenic consortia[J].Applied and Environmental Microbiology,1999,65(3):1152-1160.
  (責编:徐世红)
转载注明来源:https://www.xzbu.com/1/view-15337197.htm