TiO2 薄膜光学特性研究
来源:用户上传
作者: 王涤飞 熊科
摘要:TiO2 纳米薄膜特殊的物理化学性质,特别是作为光物理材料、环境 污染治理中的光催化氧化催化剂有着广泛的应用前景而引起人们的很大兴趣。近 年来,人们对 TiO2 薄膜的光催化性能进行了大量的研究,但是相对而言,TiO2 纳米薄膜在可见光波段范围的光学性能方面的基础研究还有待加强。本研究采用反应射频磁控溅射法在 K9 抛光玻璃基体上制备二氧化钛薄膜,用椭偏仪对薄膜样品进行测试,获得椭偏位相参量Δ和椭偏振幅参量ψ。借助计算机通过迭代方法拟合分析得到薄膜的折射率和厚度等光学参数,结合实验参数 对结果进行讨论,最后得出结论。TiO2 纳米薄膜在可见光波段吸收小、是透明的,所以是用来构成一维光子晶体的理想组份,对其光学性能的基础研究为以后光子晶体的结构设计具有积极的意义。
关键词:磁控溅射 TiO2 薄膜 椭偏技术 光学性能
薄膜材料是一种物质形态,其膜材十分广泛,单质元素、化合物或复合物、无机材料或有机材料均可制作成薄膜。薄膜材料与块状物质一样,可以是非晶态、多晶态或单晶态。从薄膜的厚度看,已有厚度仅为几纳米到一微米的超薄膜制品。 纳米薄膜在许多领域的广泛应用归功于其特异于普通薄膜的光学、电学等性质。 自 70 年代以来,薄膜技术得到了突飞猛进的发展,无论在学术上还是在实际应 用中都取得了丰硕的成果。薄膜技术和薄膜材料的发展涉及到几乎所有的前沿学 科,它的应用与推广又反渗透到各个学科以及应用技术中,如电子、计算机、磁 记录[1]、信息、传感器[2]、能源、机械[3]、光学[4]、航空航天、核工业、化工、 生物[5]、医学等,现己成为当代真空技术和材料科学中最活跃的研究领域,所制 备的各种类型的新材料,新结构、新功能的薄膜,对材料的研究和使用都起到了巨大的推动作用。
纳米 Ti02 薄膜是一种常见的功能薄膜,具有如下特殊的性质:
(1)光学特性
氧化钛(Ti02)薄膜具有优良的透光性、高折射率和良好的化学稳定性,并且折射率可随制备工艺变化,是非常重要的光学膜,已被广泛地应用于抗反射涂层、干涉滤波片、电致变色窗和薄膜光波导等。而且因为半导体纳米粒子的尺寸与物理的特征量相差不多,如纳米粒子的粒径与波尔半径或德布罗意波长相当时,纳米粒子的量子尺寸效应就十分显著。另外,纳米粒子拥有很大的比表面积,又相当一部分的原子处于颗粒表面,处于表面态的原子、电子与处于内部的原子、电子有很大的区别。量子尺寸效应和表面效应对纳米半导体粒子的光学特性有很大的影响,并使之产生一些新的光学性质,如宽频带吸收。纳米 Ti02 对紫外光有 强吸收作用,而微米级的 Ti02 对紫外光几乎不吸收,这主要是因为纳米二氧化钛的半导体性质,即在紫外光的照射下,电子被激发,由价带向导带跃迁引起的。
(2)光催化特性
Ueda 等人较早对半导体的微多相光催化进行了系统的研究。研究表明,Ti02 纳米半导体复合粒子的量子尺寸效应强烈地影响其光催化甲醇脱氢活性。此外, 纳米 Ti02 半导体粒子能够催化体相半导体所不能进行的反应。
(3)光电转换特性
近年来,由纳米半导体粒子构成的多孔大比表面积太阳能电池具有优越的光电转换特性而备受瞩目。Gratzei 等人在 1991 年报道了经三双吡啶合钌染料敏 化的纳米太阳能电池的卓越性能,在模拟太阳光源的照射下,其光电转换性能可 达 12%。由于纳米 Ti02 多孔电极表面吸附的染料分子数是普通电极的 50倍,而且几乎每个染料分子都与 Ti02 分子直接作用,光生载流子的界面电子转移速度 快,因而具有优异的光吸收和光电转换特性[9]。
(4)电学特性
介电和压电是材料的基本特征之一。纳米半导体的介电行为和压电性能与常
规的半导体材料有很大不同,归纳起来是:介电常数随测量频率的减少呈明显的 上升趋势;在低频范围内,纳米半导体材料的介电常数呈现尺寸效应;纳米半导体 可以产生强的压电效应。
二氧化钛薄膜的应用:二氧化钛是一种重要的氧化物陶瓷,也是一种重要的 宽带隙半导体氧化物材料,它有着独特的光学、电学等物理性能及优良的化学稳 定性。在可见光和近红外波段透光性好等许多优良的光学性质,具有高介电常数、 高折射率及良好的电光学效果,还具有优良的介电、压电、气敏、光催化性能, 并能够抵抗介质的电化学腐蚀。该材料价廉无毒和性能稳定,在超薄电容器、红 外窗口材料、光电转换、光催化、非线形光学、光通讯、气(湿)敏传感等微电子 工业、光学器件、传感器、太阳能利用、催化工业和环境保护等科学技术领域里 得到了广泛的研究和应用,吸引了中外广大科技工作者的关注。Ti02 薄膜己成为 一种重要的无机功能材料,在国民经济建设中正发挥着越来越大的作用。
(1)TiO2 薄膜在光电领域的应用有:
作为用于太阳能电池的减反膜,可使光学反射降低 50%左右,相应地使 太阳能电池的输出提高 10%,还用在电致变色显示器、电致变色开关、大型天文 望远镜等;作为紫外线过滤层;可作为高反射膜的膜层使光纤端面的反射性能大大
提高;用于波分复用滤波膜[12]等;在光纤尖上镀 Ti02 膜以提高光纤尖的工作寿命,实验表明这种方法能够有效的提高光纤尖的抗污染能力。
(2)光催化
1972 年,日本的 Fujishima 等人首次发现 Ti02 具有光催化性能,从那时起半 导体光催化受到广泛重视。现在普遍采用悬浮相 Ti02 作光催化剂,这种催化剂存 在易失活、易团聚、难回收等缺点,严重限制了光催化的应用发展。制备负载型 光催化剂是解决这一问题的有效办法。纳米 Ti02 光催化剂的应用主要是基于纳米 氧化钛在紫外光的激发下具有氧化一还原性的基本原理。纳米氧化钛的这一活泼 的性质越来越广泛地应用于人们的日常生活。
(3)太阳能电池与水分解
单晶硅太阳能光电池自 20 世纪 40 年代发明以来,人们为在光电转换中得到 大量的电能而付出了巨大的努力。1991 年,Gratzel 等报道了染料敏化 Ti02 纳米 薄膜太阳能光电池,光电转换效率达 10%以上。由于这种光电池使用了液相电解 质,使得制造极不方便,而且整个装置的稳定性也不好,因而转向固相电解质光 电池的研究。将 Ti02 用于光催化分解水,产生氢气和氧气,可提供无污染的、高效的、无害的清洁能源。
参考文献:
[1]Y. Einaga, Z. Z. Gu et al, Reversible photo induced switching of magnetic properties at room temperature of iron oxide particles in self-assembled films containing azobenzene, ThinSolid Films374(2000)109
[2]Y. Shimizu and M. Egashira, Basic aspects of semiconductor gas sensors and recent progress in gas sensing materials, Ceramics38(2003)407
转载注明来源:https://www.xzbu.com/1/view-1665521.htm