您好, 访客   登录/注册

遥感影像地物信息智能提取方法研究

来源:用户上传      作者: 刘兴荣,张勇荣,杨琴

  摘要:遥感越来越多地被用于提取不同尺度土地利用、地面覆盖变化特征以及人文特征信息。准确选取适当的遥感数据是快速、精确地发现并提取遥感图像中所需信息的前提。综述了基于遥感影像提取地物信息的方法,并列举一些应用实例。
  关键词:遥感;信息提取;数据源
  中图分类号:C93文献标志码:A文章编号:1673-291X(2011)12-0305-03
  
  引言
  遥感是20世纪60年代发展起来的综合性对地观测技术,它的产生和发展是人们认识和探索自然界的客观需要[1]。它拓展了人眼观察的光谱范围,大大提高了数据获取的空间详细程度,可应用于军事、农业、林业、地矿、水利和环保等领域。但通过遥感器观测的遥感数据,由于受到太阳和大气等条件的影响,必须经过人工判读或计算机处理,才能最终应用于各种领域。本文综述了基于遥感影像提取地物信息的方法,并列举一些应用实例。
  一、多源遥感数据概述
  遥感技术作为一种准确、客观、及时获取宏观信息的手段,在城市规划、土地利用监测、农业、林业以及自然灾害预报等方面越来越得到广泛的重视和应用[2]。准确选取适当的遥感数据是快速、精确地发现并提取遥感图像中所需信息的前提[3]。地物信息提取常用的遥感图像可以分为以下几类。
  1.多光谱和全色影像。全色影像具有较高的空间分辨率,而多光谱图像可以更精细地描述目标光谱。全色图像与多光谱图像融合,既可以利用全色图像的高分辨改善多光谱图像分辨率,又可以充分利用多光谱图像中特有的对目标某些独特特征的精细描述,使融合图像包含更丰富的信息[4]。多光谱影像及融合影像是目前地物信息提取研究的主要信息源。
  2.SAR影像。合成孔径雷达(synthetic aperture radar,SAR)是一种主动遥感方式,与光学遥感相比,具有全天时、全天候、多波段、多极化工作方式、可变侧视角穿透能力强和高分辨率等特点[5]。SAR影像在水体覆盖区域具有反射值低的特征,能够与其他地物形成明显的反差,在研究水体覆盖变化方面具有独特的优势。SAR图像中还含有丰富的纹理结构信息,不同的地表粗糙度呈现出不同的纹理特征。原始的光谱信息加上纹理信息可以提高影像的精确性,建立和充分应用基于纹理特征的地物分类及信息提取方法,将是今后研究高分辨率遥感影像信息提取的方向之一 [6~8]。
  3.高光谱影像。高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。高光谱遥感数据有更多的波段,更高的波谱分辨率,使得高光谱数据在生态领域有更广泛的应用[9~10]。对高光谱数据特征的研究和分析对于准确地获得目标地物的有用信息是极其重要的。
  4.航片。航空影像数据以其直观、信息量丰富、可读性强等诸多优点,使它既是基础地理数据产品的重要组成部分,又是生产或合成其他基础地理数据产品的信息来源与基础。许多学者在城市防震减灾、沟谷侵蚀定量监测以及测绘中都进行了成功应用[11~12]。
  二、遥感影像提取地物信息的方法
  1.目视解译。卫星影像的解译是应用遥感技术的一个关键环节,目视解译基于专家经验和智能,是遥感应用的一项很重要的基本功,它是根据样本的图像特征和空间特征(形状、大小、阴影、图形、纹理、位置和布局),并与多种非遥感信息资料相结合,运用生物、地学等相关规律,采用对照分析的方法,由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程[13~15]。目视解译的方法目前在遥感解译中的应用非常普遍。赵兴实等[14]在土壤侵蚀现状调查中,张芳等[15]在森林资源调查中都运用了遥感影像目视解译的方法。
  2.非监督分类法。遥感影像的非监督分类也称为聚类或点群分析,是在多光谱图像中搜寻、定义其自然相似光谱集群组的过程。非监督算法是按照某种相似性准则对样本进行合并或分类,不需要人工选择训练样本,仅需极少的人工初始输入,计算机按一定规则自动地根据像元光谱或空间特征组成集群组,然后分析者将每个组和参考数据比较,将其划分到每一类中 [16~17]。但由于“同物异谱、异物同谱”等现象的存在,其结果一般不能令人满意。
  3.监督分类法。监督分类是在已知类别的训练场地上提取各类别训练样本,通过选择特征变量、确定判别函数或判别式把影像中的各个像元点划归到各个给定类的分类[17]。监督分类方法由于引入了部分先验知识,故其分类精度相对于非监督分类算法往往较高,同时,算法的稳健性也能得到较大程度地提高[18]。
  4.最大似然法。最大似然方法通过对研究区域的统计和计算,得到各个类别的均值和方差等参数,从而确定一个分类函数,然后将待分类图像中的每一个像元代入各个类别的分类函数,将函数返回值最大的类别作为被扫描像元的归属类别,从而达到分类的效果[19]。最大似然法分类一直受到许多学者的关注,张亮等[20]将光谱角以概率因子的形式加入到判别函数中构造一种新的判别函数,有机地将光谱角这一特征信息加入影像分类;吴连喜等[21]将一种改进的最大似然法用于地物识别;陈敬柱等[22]提出了“先主要后次要,层次化推进原则”,应用最大似然方法进行植被信息识别提取,降低了“异质同像”的误判率,较大程度上避免了“混合像元”的不确定因素,同时将“混合像元”作为进一步区分不同植被类型的参考依据,使可解译的植被信息量增加,取得良好的效果。
  三、实例分析
  1.植被信息提取。遥感技术提取植被信息已经有很长的历史,遥感可以快速有效地监测大面积植被的种类、特性、长势等各类信息。由于植被在不同波段内表现出不同的吸收反射特征,这些特征可以有效地监测出植被的各类信息[23]。丁丽霞等[24]利用TM和SPOT遥感影像,采用目视解译和图像勾绘的方法,得出天目山国家级自然保护区毛竹林信息;官凤英等[25]以TM影像为数据源,应用ERDAS提供的非监督分类、最大似然分类和子象元分类三种方法,对典型地物进行了分类和精度评价;李敏等[26]讨论了面向对象的高分辨率遥感信息提取的技术,并从IKONOS影像中提取耕地信息与传统分类方法提取的结果进行了对比。
  2.水体信息提取。水资源分布的调查与监测是控制水污染和生态保护的前提,而遥感影像具有监测范围广、获取周期短、地物信息丰富的特点,对调查与监测水资源分布起着重要的作用[27]。黄海波等应用ASTER遥感影像研究了水体信息提取的方法;遥感影像上陆地和水体的边界线被定义为水边线,郑宗生等[28]利用遥感信息提取水边线,可以监测海岸带潮滩的动态变化,也可以利用不同时相的水边线信息构建潮滩的三维地形模型,为淤泥质潮滩剖面的研究提供重要的数据保证。
  3.道路信息提取。从遥感数字影像中自动提取道路之类的线性地物信息是遥感信息提取的难点,影像上的道路比其他地物更突出,而且道路成网,关系明晰,但实际提取效果并不理想。如何快速、准确地从遥感影像中提取所需信息已成为研究方向[29~30]。
  4.居民地信息提取。居民地是人类从事生产和生活需要而集聚定居的各种形式的居住场所,是自然景观和人造景观的综合体[31]。利用遥感影像快速准确地提取居民地信息可以为灾害评估、城镇扩展和环境变化等相关研究提供必要的基础信息[31~34]。查勇等[32]运用归一化建筑指数,从TM图像成功提取了无锡市城镇用地信息;杨存建等[33]从对居民地的遥感信息机理分析入手,分析了居民地在Landsat TM2、TM3、TM4、TM5、TM7等各个波段上与其他地类的可分性;安如等[34]基于光谱特征分析,建立决策树模型,进行了居民地信息的自动提取。

  5.其他地物信息提取。随着遥感技术的不断提高,人们开始考虑使用高分辨率遥感影像对区域人文信息进行提取[35]。遥感在人口估计统计模型中的使用始于20世纪50年代中期,由于与人口信息相关的地表信息在影像上的表达纹理、形状各异,利用某种方法从高分辨率遥感影像中提取人口信息是今后研究的一个突破点[35~36]。
  结论与展望
  随着遥感技术的迅猛发展,光学、热红外、微波、多光谱、高光谱等大量功能各异的遥感器不断更新换代,遥感已经越来越多地用作提取局域、区域以及全球尺度土地利用、地面覆盖变化特征以及人文特征的信息源。准确选取适当的遥感数据是快速、精确地发现并提取遥感图像中所需信息的前提。全色与多光谱融合影像由于成本较低是目前地物信息提取的主要数据源,不同的研究尺度及研究内容在遥感数据选择上各有侧重。
  遥感数据的解译是遥感应用的基本方法,目前采用的解译方法有很多,各有优势,但单一方法得到的解译结果往往不能达到满意的效果。因此许多学者同时使用多种方法进行遥感数据解译。戴昌达等[37]利用Landsat TM数据,采用了图像自动识别分类与目视判读相结合的方法获得城市的面积;陈超等[38]采用目视修改的方法来对监督分类进行补充。
  多源遥感数据已经在很多方面有了很大的应用,为人们宏观分类识别地物提供了基础。关于多源遥感数据的处理与信息提取的技术,虽然取得了一些进展,但仍存在一些不足,因此,基于多源遥感数据提取地物信息还有很大的空间值得去研究。
  
  参考文献:
  [1]李治洪,段玉山,等.地理信息技术基础教程[M].北京:高等教育出版社,2005.
  [2]彭望碌,白振平,刘湘南,等.遥感概论[M].北京:高等教育出版社,2002.
  [3]陈永慧,李小娟,胡德勇.遥感图像土地覆被专题信息提取方法综述[J].首都师范大学学报:自然科学版,2009,(1):59-69.
  [4]种占学,杨玉静,焦荣恩.多源全色影像与多光谱影像融合技术研究[J].河北师范大学学报:自然科学版,2009,(2):267-270.
  [5]申邵洪,谭德宝,梁东业.基于马尔科夫随机场的多时相SAR影像变化检测研究[J].长江科学院院报,2010,(1):49-51.
  [6]梁国军,彭明春,王崇云.遥感影像纹理分析方法研究[J].云南地理环境研究,2009,(1):93-98.
  [7]裴亮,谭阳.基于变差函数的遥感影像纹理特征提取[J].地理空间信息,2008,(5):15-17.
  [8]李林宜,李德仁.基于免疫粒子群优化算法的影像纹理分类[J].测绘学报,2008,(2):185-189.
  [9]温兴平,胡光道,杨晓峰.从高光谱遥感影像提取植被信息[J].测绘科学,2008,(3):66-68.
  [10]Kempeneers P,et a1.Generic wavelet―based hyperspectral classification app]ied to vegetation stress detection[J].IEEE Transactions on Geoscience and Remote Sensing,2005,(3).
  [11]刘月英,李万辉.利用航片和GIS分析影响滑坡的因素[J].水土保持应用技术,2008,(4):14-15.
  [12]王辉,王天明,杨明博,等.基于航片的黄土高原丘陵沟壑区沟谷侵蚀定量监测[J].应用生态学报,2008,(1):127-132.
  [13]沈璐璐,蔡丽娜.基于非监督分类的遥感信息提取方法尝试[J].科技创新论坛,2010,(14):162-163.
  [14]赵兴实,田中雨,刘岩.卫片目视解译在土壤侵蚀现状调查中的应用[J].水土保持通报,1996,(1):149-152.
  [15]张芳,李鑫,陈佳楠.卫星遥感影像目视解译在森林资源调查中的应用分析[J].内蒙古林业调查设计,2009,(4).
  [16]陈富龙,王超,张红.改进最大似然遥感影像分类方法――以SAR影像为例[J].国土资源遥感,2008,(1):75-78.
  [17]薛廉,周春兰.基于监督分类分区域的特征因子提取[J].地理空间信息,2009,(2):100-102.
  [18]郭艳芬,刘志红,谢明元.基于植被物候特征与监督分类的青南高原信息提取[J].遥感技术与应用,2009,(2):223-229.
  [19]刘涛,孙忠林,孙林.基于最大似然法的遥感图像分类技术研究[J].福建电脑,2010,(1):7-8.
  [20]陈亮,刘希,张元.结合光谱角的最大似然法遥感影像分类[J].测绘工程,2007,(3):40-47.
  [21]吴连喜,王茂新.一种改进的最大似然法用于地物识别[J].农业工程学报,2003,(4):54-57.
  [22]陈敬柱,贺瑞霞,郭恒亮.最大似然法在植被信息识别提取中的应用[J].水文地质工程地质,2004,(2):94-96.
  [23]温兴平,胡光道,杨晓峰.从高光谱遥感影像提取植被信息[J].测绘科学,2008,(3):66-68.
  [24]丁丽霞.天目山国家级自然保护区毛竹林扩张遥感监测[J].浙江林学院学报,2006,(3):297-300.
  [25]官凤英,范少辉,蔡华利,等.竹林遥感信息提取方法比较研究[J].安徽农业科学,2010,(8).
  [26]李敏,崔世勇,李成名,等.面向对象的高分辨率遥感影像信息提取――以耕地提取为例[J].遥感应用,2008,(6):63-89.
  [27]黄海波,赵萍,陈志英,等.ASTER遥感影像水体信息提取方法研究[J].遥感技术与应用,2008,(5).
  [28]郑宗生,周云轩,沈芳.基于DTM的水边线遥感信息提取方法[J].国土资源遥感,2007,(2):56-59.
  [29]孙晓霞,等.利用面向对象的分类方法从IKONOS全色影像中提取河流和道路[J].测绘科学,2006,(1):62-63.
  [30]林宗坚,刘政荣.从遥感影像提取道路信息的方法评述[J].武汉大学学报:信息科学版,2003,(1):90-93.
  [31]张源,王仰麟,彭建,等.基于空间概率面的山区居民地遥感信息提取[J].地理与地理信息科学,2006,(4):6-10.
  [32]查勇,倪绍祥,杨山.一种利用图像自动提取城镇用地信息的有效方法[J].遥感学报,2003,(1):38-39.
  [33]杨存建,周成虎.TM影像的居民地信息提取方法研究[J].遥感学报,2000,(2):146-150.
  [34]安如,赵萍,王慧麟,等.遥感影像中居民地信息的自动提取与制图[J].地理科学,2005,(1):74-80.
  [35]韩春峰,米晓飞.基于高分辨率遥感影像的人口信息的提取综述[J].科技资讯,2010,(4):111.
  [36]杜国明,张树文.基于遥感的城乡人口分布模拟――以松原市为例[J].遥感学报,2007,(2):252-256.
  [37]戴昌达,唐伶俐,陈刚,等.卫星遥感监测城市扩展与环境变化的研究[J].环境遥感,1995,(1):1-7.
  [38]陈超,江涛,岳远平.监督分类和目视修改相结合在高分辨率遥感影像中的应用[J].国土资源信息化,2009,(5):37-48.
  
  [责任编辑 魏杰]


转载注明来源:https://www.xzbu.com/2/view-394037.htm