您好, 访客   登录/注册

浅谈数学建模在高职数学教学中的渗透

来源:用户上传      作者:

  摘要:根据目前高职教育的培养目标和发展要求,分析了高职数学教学中渗入数学建模思想的意义,举例介绍了数学建模在高职数学教学中的几种渗透途径。
  关键词: 数学建模;高职数学;数学教学;渗透
   在高职教学中,数学是一门必不可少的公共基础课。高职教育的培养目标是为生产、服务和管理一线培养高素质、高技能的应用型人才,这就决定了高职院校人才培养必然具有实践性、主动性与个性化等特点。高职人才培养的总体目标使得高职数学教学改革正在向以培养学生的数学素养为目标的能力教育进行转变。高职数学教学应以“必需、够用为度”,将培养学生的创新意识和实践能力作为主要突破口。数学建模越来越受重视,如,分析与设计、预报与决策等领域已经融入了数学建模思想。在高等数学的教学过程中渗透数学建模思想.可以提高学生的各种能力,促进相关课程的学习,有助于高职高专教育培养日标的实现。
  1.高职数学教学中渗入数学建模思想的意义
   简单地说,把日常生活和工程实践中的实际问题转化成数学问题的过程就是数学建模。培养学生创新能力就是培养学生运用数学思想方法、数学知识、及计算机技术去解决各种实际问题的能力。它需要进行合理的抽象和量化,建立数学模型然后用公式模拟和验证。培养和训练学生的数学建模能力不仅能培养学生的探索精神和创新意识,而且能更深刻地激发学生的直觉思维和形象思维,使学生对实际问题的感受和领悟更加细致、敏锐,从而进一步增强学生的应用能力和创新能力。 因此,有必要在高职数学教学中渗入数学建模思想。
  2.高职数学教学中渗入数学建模思想的途径
   2.1 调整教学内容,渗透数学建模思想
   高职数学的课程设置和教学内容长期以来重基础理论、轻实践应用。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的离散的数值计算等内容,因此,我们必须要调整课程教学内容,要把数学建模渗透到课堂教学中。
   例如,在讲解二项分布时,可以引入由英国生物统计学家Calton设计的钉板模型,让学生观察计算模拟后该模型的图形表示,通过归纳对比,5000次投球小球堆积的概率图与二项分布的理论图形极其相似,这样,既能让学生了解二项分布的来源,又让学生感悟到怎样用实际模型去检验理论模型,同时使学生加深对“频率近似于概率”这一原理的理解,了解计算机模拟方法;在高等数学课程的教学中,在讲导数的概念时,给出两个模型,变速直线运动的瞬时速度模型,曲线上某一点处的切线斜率模型。为了求解这两个模型,我们抛开它们的实际意义,抽象出它们共同的本质属性,可归结为同一个数学模型,即函数的改变量与自变量改变量的比值的极限值(当自变量的改变量趋近于零时),把这个极限定义为函数的导数。再如,线性代数中课程对于行列式的定义,就可以通过介绍著名诺贝尔经济学家列昂杰夫(Leontiet)考虑的一个货物交换的经济模型,将其归结为一个三元一次方程组的求解问题来引入,这样就能从实用的角度让学生去了解一些知识的背景。这不仅能加深学生对概念、公式、定理的理解,增强用数学知识解决实际问题的能力,也调动了学生的学习好奇心和学习积极性。
   2.2 在教学中精选合适的案例,渗透数学建模思想
   在课堂教学中使用案例教学法,教师以具体的案例作为主要的教学内容,通过具体问题的建模示例,介绍数学建模的思想方法。例如,在讲授闭区间上连续函数的零点存在定理时,列举常见的一些常零点定理应用例子之后,提出如下问题:一把四脚等长的矩形椅子在不平的地面上如何才能放平?学生对这个在日常生活中司空见惯的实例,首先感到很熟悉,带有亲切感。问题看似简单,但谁也无法将它马上和今天所学的数学知识联系起来。于是兴趣一下子被调动起来,然后,教师开始用实际的椅子做起试验来,结果只需将椅子绕它的平面中心旋转一定的角度,椅子便神奇般的放稳了。在教师的引导下,学生通过数学建模的手段转化为一个简单的数学问题,从而被当堂所讲的知识轻而易举地解决了。再比如,微分方程一章除了介绍课本中物理、几何等方面的应用题外还可以引入(马尔萨斯(Malthus)模型)英国人口统计学家马尔萨斯l789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r,在此假设下,推导并求解人口随时间变化的数学模型。这样可以使学生在较简单的实际问题中提炼微分方程,并且求解。模型案例不但可以活跃课堂气氛,提高学生的课堂学习兴趣和积极性,而且使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的。
   2.3 在习题教学中渗透数学建模思想
   习题教学是培养学生应用能力的重要环节,在教完各章节内容后,根据选取一些适合学生讨论、练习的简单综合实例,让学生自己发现问题,并用所学的数学知识解决它.例如:导数的应用可布置运用导数、极值和最值的有关知识为生活和专业中一些简单的资源管理、最大利润、造价最低、征税问题等实际问题作出最优决策;在微分方程这一章,可以引入2004年全国大学生数学建模竞赛c题饮酒驾车问题,求解一阶线性微分方程等。这样就可以通过习题渗透数学建模思想,既使学生掌握了数学建模的方法,又使学生巩固了所学的知识,大大提高了学生数学实践能力。
   数学教师要转变教学观念,积极参与教学改革。培养学生的数学建模能力是高职高等数学课程教学改革的一个方向。把数学建模渗透到高职教学中,不断的寻找、创新更多合适的建模案例,在讲授数学知识的同时,把数学教学和数学建模有机地结合起来,要把培养学生具有应用数学方法解决实际问题的意识和能力放在首位。在高职高等数学教学中渗透数学建模思想,既能培养学生的数学素质和创新能力,也能改变传统教学中知识与能力脱节的弊端,有利于高职教育目标的实现。
   参考文献:
  [1]宫华,陈大亨.高职教改中的数学建模教育的发展[J].职业教育研究,2006(2),62.
  [2]徐志科.数学建模:高职数学教改的突破口[J].职业教育研究,2007,(8):100―101.
  [3]盛建芳.在数学教学中渗透数学建模思想[J].职教与成教,2008(19).


转载注明来源:https://www.xzbu.com/2/view-577492.htm