多用户正交相关延迟键控方案性能分析
来源:用户上传
作者:
摘 要:针对长期演进(LTE)移动通信系统下行链路传输中多用户的实时(RT)与非实时(NRT)业务传输性能需求问题,提出一种基于用户加权平均时延的改进型的最大加权延时优先(MLWDF)资源调度算法。该算法在考虑信道感知与用户服务质量(QoS)感知的基础上引入反映用户缓冲区状态的加权平均时延因子,该因子通过用户缓冲区中待传输数据与已发送数据的平均时延均衡得到,使具有较大时延和业务量的实时业务优先调度,提升了用户的性能体验。理论分析与链路仿真表明,提出算法在保证各业务时延及公平性的基础上,提升了实时业务的QoS性能,在用户数量达到50的条件下,对比MLWDF算法实时业务的丢包率降低了53.2%,其用户平均吞吐量提升了44.7%,虽牺牲了非实时业务的吞吐量,但仍优于VTMLWDF算法。实验结果表明,所提算法在多用户多业务传输条件下提升了实时业务的传输性能,并在QoS性能上明显优于对比算法。
关键词:长期演进系统;加权平均时延;服务质量;资源调度;实时业务;吞吐量
中图分类号:TP391.9
文献标志码:A
Abstract: Aiming at the transmission performance requirements of RealTime (RT) services and NonRealTime (NRT) services for multiuser in the downlink transmission of Long Term Evolution (LTE) mobile communication system, an improved Modified Largest Weighted Delay First (MLWDF) scheduling algorithm based on weighted average delay was proposed. On the basis of considering both channel perception and Quality of Service (QoS) perception, a weighted average dealy factor reflecting the state of the user buffer was utilized, which was obtained by the average delay balance of the data to be transmitted and the transmitted data in the user buffer. The RT service with large delay and traffic is prioritized, which improves the user performance experience.
Theoretical analysis and link simulation show that the proposed algorithm improves the QoS performance of RT services on the basis of ensuring the delay and fairness of each service. The packet loss rate of RT service of the proposed algorithm decreased by 53.2%, and the average throughput of RT traffic increased by 44.7% when the number of users achieved 50 compared with MLWDF algorithm. Although the throughput of NRT services are sacrificed, it is still better than VTMLWDF (Virtual Token MLWDF) algorithm. The theoretical analysis and simulation results show that transmission performances and QoS are superior to the comparison algorithm.
0 引言
隨着多媒体业务流、实时游戏和网络语音电话业务(Voice over Internet Phone, VoIP)等新兴业务的日益普及,通信技术需日益完善。改善不同业务的服务质量(Quality of Service, QoS)性能是长期演进(Long Term Evolution, LTE)[1]系统中基站(eNodeB)需要执行的一项重要任务。LTE下行资源调度算法[2]是通信系统中的研究热点,在调度算法中使用由信道质量指示(Channel Quality Indicator, CQI)反馈的信道感知和QoS感知实现了复杂度和传输性能之间的权衡。由于非实时(NonRealTime, NRT)与实时业务(RealTime, RT)业务的QoS性能差距较大,有必要设计一种有效的调度算法来平衡各业务之间的QoS需求的算法,这也是本文的研究目标。
在最近的研究中,已提出的分组调度算法从不同角度来满足LTE系统中各业务的QoS需求,其中包含了考虑业务状态相关性的无线调度[3]、保证比特速率的信道感知调度[4]、增强型时延敏感的调度[5]以及考虑传输能量效率的调度[6]等,从不同方面对调度算法进行改进,以提升系统性能。针对QoS参数性能及低时延需求,文献[7]在改进的最大加权延时优先(Modified Largest Weighted Delay First, MLWDF)算法的基础上提出虚拟队列概念,引入了反映用户业务数据的突发特性和某种QoS特性的数据队列状态信息为用户提供最小吞吐量保证,但未考虑用户延迟概念,未能对实时用户提供更好的性能体验。文献[8]在其算法的基础上加入了队首时延因子,初步保证了调度业务流的时延特性,但队首时延未能反映用户缓冲区的综合状态。文献[9]在经典比例公平算法的基础上引入加权平衡时延因子,考虑了用户缓冲区状态,但未考虑其他业务的QoS性能,未能给用户提供较好的用户体验性能。以上算法均未对QoS性能及用户的状态信息进行较好的结合。 本文提出一種新的基于加权平均时延的QoS感知算法。该算法考虑了业务QoS性能参数(包括最大容忍丢包率、时延门限、队首时延)和信道性能参数(包括用户平均吞吐量和信道瞬时传输速率),同时引入了反映缓冲区数据时延参量的加权平均时延因子,当用户的数据量时延较大时可优先获得资源。通过仿真平台LTESim[10]的仿真结果表明,该算法可提升数据量较大的实时业务的吞吐量及公平性,降低其丢包率与时延性能,同时保证了非实时业务的基本传输性能。
4 结语
本文提出了一种新的基于LTE系统集信道感知和QoS感知于一体的加权平均延迟下行链路资源调度算法,通过对公平性、吞吐量、丢包率和时延四个方面的仿真验证得出结论,该算法在保证非实时业务基础传输的前提下,提升了实时Video业务的吞吐量,降低了业务丢包率,达到了最优的用户性能体验。在以后的研究中,可以针对5G通信系统对于低时延特性进行进一步研究,提升各业务与系统的传输性能。
参考文献 (References)
[1] KWAN R, LEUNG C. A survey of scheduling and interference mitigation in LTE [J]. Journal of Electrical and Computer Engineering, 2010, 68(5):1186-1191.
[2] 李宛平.LTE下行资源调度算法研究[D]. 广州:华南理工大学, 2016:23-25.(LI W P. Research on LTE downlink resource scheduling algorithm [D]. Guangzhou: South China University of Technology, 2016: 23-25.)
[3] YEN W C,YEN Y C,CHIN W L. Study on state dependent radio resource scheduling for downlink traffic in LTE network[J].Wireless Personal Communications,2017, 96(3):4709-4723.
[4] PABLO A,JORGE N O,PILAR A M. 3GPP QoSbased scheduling framework for LTE[J]. RURASIP Journal on Wireless Communications and Networking,2016,17: 1-14.
[5] PADMAVATHY C,JAYASHREE L S. An enhanced delay sensitive data packet scheduling algorithm to maximizing the network lifetime [J].Wireless Personal Communications, 2017,94(4): 2213-2227.
[6] CHEN W C, CHU Y Y, PENG I H. Energysaving centric uplink scheduling scheme for broadband wireless access networks [J].EURASIP Journal on Wireless Communications and Networking,2014, 70: 1-15.
[7] ITURRALDE M, ALI Y T, WEI A. Performance study of multimedia services using virtual token mechanism for resource allocation in LTE networks[C]// Proceedings of the 2011 IEEE Vehicular Technology Conference. Piscataway, NJ: IEEE, 2011: 1-5.
[8] DARDOURI S, BOUALLEGUE R. A new scheduling algorithm for realtime communication in LTE networks[C]// Proceedings of the 2015 29th International Conference on Advanced Information Networking and Applications Workshops. Piscataway, NJ: IEEE, 2015:267-271.
[9] SIPING L, CHANG M Z, YUE Z Z, et al. Delaybased weighted proportional fair algorithm for LTE downlink packet scheduling[J]. Wireless Personal Communications, 2015, 82(3): 1955-1965.
[10] GIUSEPPER P, LUIGI A G. Simulating LTE cellular systems: an opensource framework[J]. IEEE Transactions on Vehicular Technology, 2010, 60(2): 498-513. [11] CHANG B J, LIANG Y H, CHANG P Y. Adaptive crosslayerbased packet scheduling and dynamic resource allocation for LTEadvanced relaying cellular communications[J]. Wireless Personal Communications, 2017, 96(1):939-960.
[12] ARKADIUSZ B, KURT T. Comparative performance study of LTE downlink schedulers[J]. Wireless Personal Communications, 2014, 74(2):585-599.
[13] 崔亞南,苏寒松,刘高华.LTE MAC层低计算量的下行调度及资源分配[J].计算机应用,2013,33(6):1523-1526.(CUI Y N, SU H S, LIU G H. LTEMAC layer downlink scheduling and resource allocation with low calculation amount[J]. Journal of Computer Applications, 2013, 33(6):1523-1526.)
[14] NADIM K M M, ZURINA B M H, MOHAMED O. Twolevel QoSaware framebased downlink resources allocation for RT/NRT services fairness in LTE networks[J]. Telecommunication System, 2017, 66(3):357-375.
[15] SAMIA D, RIDHA B. Comparative study of downlink packet scheduling for LTE networks [J]. Wireless Personal Communications, 2015, 82(3):1405-1418.
[16] PATRIC S, MARTIN R. Video transport evaluation with H.264 video traces[J]. IEEE Communications Surveys & Tutorials, 2012, 14(4):1142-1165.
[17] The 3rd Generation Partnership Project.3GPP TS 36.213, Evolved Universal Terrestrial Radio Access (EUTRA) [S]. Paris: 3GPP Organizational Partners, 2010:58-60.
转载注明来源:https://www.xzbu.com/8/view-14941551.htm