浅析初中数学课堂导入艺术
来源:用户上传
作者: 吴秀珍
课堂开始的新课导入可以看成是“新课堂”的“水之源”、“景之韵”,要想上好一堂数学课,良好的开端是成功的一半,新课导入是数学教学中极其重要的一环,也是一堂课成功的起点和关键。理想的新课导入,能为学生创设愉悦的学习氛围,增进学生的课题意识,启动学生大脑两半球的功能,激发学生的情感和兴趣,让他们产生强烈的参与欲望,从而使课堂教学顺利地进入最佳态势。我根据教学实践与初中数学课堂的实际需要,总结出以下一些课堂导入的方法,供同行切磋。
一、直接点明法
直接点明法也叫开门见山法。上课一开始,我就直接揭示课题,将有关内容直接呈现给学生,用三言两语直接阐明对学生的目的要求,简洁明快地讲述或设问,引起学生的有意注意,使学生心中有数,诱发探求新知识的兴趣,把学生分散的注意力引导到课堂教学中来。例如,讲“整式的加减”时我这样导入新课:我们已经学习了整式的相关概念、合并同类项法则、去括号和添括号法则,本节课,我们将运用概念及法则来学习整式的加减运算。这样一来,可达到一开始就明确目标,突出重点的效果。又如,在教学“一元二次方程的解法”(第一课时)时,我在复习一元二次方程的概念、一般式等基本知识后,直接提出问题:“对于形如A×2=B的方程,如何求解?”引出一元二次方程的特殊情形“A×2=B的解法”,然后导出新课题:“直接开平方法”。开门见山导入法具有简洁明快的特点,能在很短的时间内就引起学生有意注意,帮助学生把握学习方向。凡属学生所熟知的事物或一点就可以大致了解的教学内容,教师可采用直接点明法。
二、联系生活法
数学起源于日常生活和生产实际,而生活实例又生动又具体。因此我用贴近学生生活实际或为学生所喜闻乐见的学习材料,把学生熟悉、感兴趣的实例作为认识的背景材料,导入课题,不仅使学生感到亲切、自然,激发学生的学习兴趣,而且尽快唤起学生的认知行为,促成学生主动思考,为课堂的后继实施作好准备。例如,在“用正多边形拼地板”的教学导入:我先让学生分组去收集生活中可以见到的地砖和墙砖的图案,介绍生活中的一个例子:一天,小明到他爸爸开的瓷砖厂里参观,发现各色各样的地板砖令人目不暇接,他走到样品展览区,发现各种不同形状的地板砖铺成的样板,由三角形铺成的井然有序,由正六边形铺成的像盛开的花朵,由四边形拼接的错落有致。小明心想,怎么不见由正五边形、正八边形等其他形状的地板拼成的样板呢?他突发奇想,要是开发研制正五边形或其他正多边形的地板砖,这些形状的地板砖市面上都没见过,投入市场后肯定会成为市场的抢手货。小明把他的想法告诉了爸爸和设计科的人员,结果引来哄堂大笑,你知道这是为什么吗?学完本节课,你就会明白其中的道理了。像这样的引入,从学生身边的事和物入手,由学生自己去计算、思考,很自然、亲切,能充分调动学生的主动参与,容易引起学生的兴趣和好奇心,想弄清楚到底是什么道理,带着这样的疑问进行学习,使学生更加明白学习数学的现实意义,凸显数学的应用价值。很多数学内容都可以用这种方式导入,如数轴的概念、科学记数法概念、正负数概念、生活中的立体图形等。
三、温故知新导入法
温固知新的教学方法,可以将新旧知识有机地结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,我先复习相交弦定理内容及证明,即“圆”内两条相交弦被交点分成的两条线段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式。在此基础上我引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。
四、类比导入法
在讲相似三角形性质时,教师可以从全等三角形性质为例类比。全等三角形的对应边、对应角、对应线段、对应周长等相等。那么相似三角形这几组量怎么样?这种方法能使学生从类推中促进知识的迁移,发现新知识。
五、亲手实践导入法
亲手实践导入法是组织学生进行实践操作,学生通过自己动手动脑去探索知识,发现真理。例如在讲三角形内角和为180°时,我让学生将三角形的三个内角剪下拼在一起,从而从实践中总结出三角形内角和为180°,使学生享受到发现真理的快乐。
六、设疑式导入法
设疑式导入法是根据中学生追根求源的心理特点,一上课就给学生创设一些疑问,创设矛盾,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知的一种方法。例如:有一个同学想依照亲戚家的三角形玻璃板割一块三角形,他能不能把玻璃带回家就割出同样的一块三角形呢?同学们议论纷纷。然后,我向同学们说,要解决这个问题要用到三角形的判定。现在我们就解决这个问题――全等三角形的判定。
七、演示教具导入法
演示教具导入法能使学生把抽象的东西变得形象、具体、生动、直观。例如:在讲弦切角定义时,我先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与圆相交成圆周角∠BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。
八、强调式导入法
强调式导入法是根据中学生对有意义的东西感兴趣的特点,一上课就叙述本课或本章的重要性的一种方法。例如:三角形是平面几何的重点,而圆是平面几何重点的重点,它在中考试题中占有重要地位,是将来学习深造的基础。今天,我们就学习第七章圆。总之,数学的导入法很多,其关键就是要创造最佳的课堂气氛和环境,充分调动内在积极因素,激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
在实际教学中,导入的类型和方法是很多的,不只是以上几种。对不同的年级、不同的内容有不同的导入方法。即使是同一个内容也可以用不同的方法导入。导入的方法并不是孤立的,各种方法一般都在交叉使用。但这些都不是问题的关键,最重要的是导入的方式及导入的例子要贴近学生、贴近生活、贴近教学,吸引学生,激发学生的求知欲。在整个数学活动过程中,教师应想方设法设计好每节课的导入,使学生产生一种主动积极的态度,充分发挥学生非智力因素,让不同的学生都会在自己原有的水平上得到发展,都能体验到数学活动中创造的乐趣和成功的喜悦,树立起学好数学的信心,从而实现《新课程标准》提出的“人人学有价值的数学;人人都能获得必要的数学;不同人在数学上得到不同的发展。”
因此在初中数学课堂教学中,教师要精心设计导入,根据课型特点,导入要灵活,这样才能调动学生的学习积极性,提高教学效果。
转载注明来源:https://www.xzbu.com/9/view-907207.htm