您好, 访客   登录/注册

具有变号非线性项的分数阶微分方程边值问题正解的存在性

来源:用户上传      作者:江卫华 韩晴晴 杨君霞

  摘 要:为了进一步研究非线性项的分数阶微分方程边值问题的性质,讨论了带有变号非线性项的(n-1,1)分数阶微分方程特征值问题正解的存在性,其中分数阶导数是Riemann-Liouville型。首先利用给定边值问题的Green函数,将微分方程转化为等价的积分方程,然后在非线性项f(t,x)满足Caratheodory条件(即任意选取变量x,非线性项f(t,x)为可测函数,对(0,1)区间内几乎所有t,非线性项f(t,x)为x的连续函数)下。通过构造适当的Banach空间,运用锥拉伸与锥压缩不动点定理和Leray-Schauder非线性抉择得出边值问题正解存在的充分条件。结果表明,非线性项f(t,x)中的t可以在(0,1)区间内任何点处具有奇性,同时还改变了使边值问题的解存在的特征值λ的取值范围。研究结果为现存结论的深入研究打下了基础。
  关键词:常微分方程;不动点定理;巴拿赫空间;格林函数;正解;分数阶微分方程
  中图分类号:O175.8 文献标志码:A
  文章编号:1008-1542(2019)04-0294-07
  近年来,随着分数阶微分方程在物理、化学、工程等领域的广泛应用,越来越多的学者意识到了它的重要性[1-7],对分数阶微分方程的边值问题正解的存在性的研究成为热点问题之一[8-24]。
  
  3 结 论
  笔者分别运用锥拉伸与锥压缩不动点定理和Leray-Schauder非线性抉择,在非线性项f(t,x)不是连续函数的情况下,给出了具有特征值的分数阶微分方程两点边值问题正解存在的充分条件。使得非线性项f(t,x)中的t可以在(0,1)区间内任何点处具有奇性,同时还改变了使边值问题的解存在的特征值λ的取值范围。研究结果为现存结论的深入研究打下了基础。
  参考文献/References:
  [1] 钟承奎.非线性泛函分析引论[M]. 兰州:兰州大学出版社,2004.
  [2] 郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10.
  ZHENG Zuxiu.On the development and applications of fractional differential equations [J]. Journal of Xuzhou Normal University(Natural Science Edition),2008,26(2):1-10.
  [3] 王高雄,周之铭,朱思铭,等.常微分方程[M].北京:高等教育出版社,2006.
  [4] 苏新卫,穆晓霞.非线性分数阶微分方程正解的存在性和唯一性[J].河南师范大学学报(自然科学版),2006,34(4):9-12.
  SU Xinwei, MU Xiaoxia. Existence and uniqueness of positive solutions for a system of nonlinear fractional differential equations [J]. Journal of Henan Normal University (Natural Science),2006,34(4):9-12.
  [5] EIDELMAN S D, KOCHUBEI A N. Cauchy problem for fractional diffusion equations [J].Journal of Differential Equations,2004,199(2):211-255.
  [6] BAI Zhanbing,GE Weigao,WANG Yifu. The method of lower and upper solutions for some fourth-order equations[J]. Journal of Inequalities in Pure and Applied Mathematics, 2004, 5(1):124-131.
  [7] KILBAS A A, TRUJILLO J J. Differential equations of fractional order: Methods, results and problems.Ⅱ[J].Applicable Analysis, 2002, 81(2):435-493.
  [8] YUAN C. Multiple positive solutions for (n-1,1)-type semipositione conjugate boundary value problems of nonlinear fractional differential equations[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2010,36:1-12.
  [9] 劉静.几类非线性项变号的微分方程边值问题解的存在性[D]. 曲阜:曲阜师范大学,2012.
  LIU Jing. Existence of Solutions for Boundary Value Problems of Differential Equations with Several Kinds of Nonlinear Term Variations[D]. Qufu: Qufu Normal University,2012.   [10]王亚平,刘立山,吴永洪.带有Riemann-Stieltjes积分边界条件的非线性奇异分数阶微分方程边值问题正解的存在性[J]. 应用数学学报,2017,40(5):752-769.
  WANG Yaping, LIU Lishan, WU Yonghong. Existence of multiplicity of positive solutions for nonlinear singular fractional differential equation with Riemann-Stieltjes integral boundary conditions[J]. Acta Mathematicae Applicatae Sinica,2017,40(5):752-769.
  [11]江衛华,陈静,郭彦平.具有变号非线性项的二阶三点微分方程组的边值问题的2组正解[J].中国农业大学学报,2007,12(1):95-98.
  JIANG Weihua, CHEN Jing, GUO Yanping. Two positive solutions to a second-order and three-point boundary value problem with sign changing nonlinear term[J]. Journal of China Agricultural University,2007,12(1):95-98.
  [12]江卫华,张强,郭巍巍.具有变号非线性项的脉冲微分方程边值问题的正解[J].河北科技大学学报,2013,34(1):1-6.
  JIANG Weihua, ZHANG Qiang, GUO Weiwei. Positive solutions of the boundary value problem for impulsive differential equations with sign-changing nonlinearterm[J]. Journal of Hebei University of Science and Technology,2013,34(1):1-6.
  [13]姚庆六.带变号系数的非线性二阶两点边值问题的正解[J].郑州大学学报(理学版),2007,39(1):6-11.
  YAO Qingliu. Positive solutions of a nonlinear second-order two-point boundary value problems with coefficient that changes sign[J]. Journal of Zhengzhou University (Natural Science Edition),2007,39(1):6-11.
  [14]杜睿娟.共振情形下二阶多点边值问题解的存在性[J].数学的实践与认识,2015,45(24):272-278.
  DU Ruijuan. Existence of solutions for second-order multi-point boundary value problems at resonance[J]. Mathematics in Practice and Theory,2015,45(24):272-278.
  [15]田元生,李小平,葛渭高. p-Laplacian分数阶微分方程边值问题正解的存在性[J].应用数学学报,2018,41(4):529-539.
   TIAN Yuansheng, LI Xiaoping, GE Weigao. Existence of positive solutions to boundary value problems of fractional differential equation with p-Laplacian[J]. Acta Mathematicae Applicatae Sinica,2018,41(4):529-539.
  [16]王威璇,翟成波.无穷区间上分数阶微分方程m-点边值问题的正解[J].吉林大学学报(理学版),2018,56(6):1315-1323.
  WANG Weixuan, ZHAI Chengbo. Positive solutions of m-point boundary value problems for fractional differential equations on infinite intervals [J].Journal of Jilin University (Science Edition),2018,56(6):1315-1323.
  [17]廖秀,韦煜明,冯春华.一类无穷区间上分数阶微分方程边值问题正解的存在性[J].吉林大学学报(理学版),2018,56(6):1299-1306.
  LIAO Xiu, WEI Yuming, FENG Chunhua. Existence of positive solutions for a class of boundary value problems of fractional differential equations on infinite interval[J]. Journal of Jilin University (Science Edition),2018,56(6): 1299-1306.
  [18]刘元彬,梅雪晖,胡卫敏.含p-Laplacian算子的分数阶脉冲微分方程边值问题的解[J].数学的实践与认识,2018,48(20):202-211.   LIU Yuanbin, MEI Xuehui, HU Weimin. Solutions of boundary value problems of fractional impulsive differential equations with p-Laplacian operator[J]. Mathematics in Practice and Theory,2018,48(20):202-211.
  [19]黃燕萍,韦煜明.一类分数阶微分方程多点边值问题的多解性[J].广西师范大学学报(自然科学版),2018,36(3):41-49.
  HUANG Yanping, WEI Yuming. Multiple solutions of multiple-points boundary value problem for a class of fractional differential equation[J]. Journal of Guangxi Normal University (Natural Science Edition),2018,36(3):41-49.
  [20]宋姝,周碧波,张玲玲.一类Caputo分数阶脉冲微分方程的反周期边值问题[J].中北大学学报(自然科学版),2018,39(4):391-396.
  SONG Shu, ZHOU Bibo, ZHANG Lingling. The anti-periodic boundary value problems for a class of impulsive differential equations of Caputo fractional order[J]. Journal of North University of China(Natural Science Edition),2018,39(4):391-396.
  [21]陈会.非线性分数阶微分方程边值问题解的存在性[J].淮阴师范学院学报(自然科学版),2018,17(3):205-211.
  CHEN Hui. Existence of solutions for boundary value problems with nonlinear fractional differential equations[J]. Journal of Huaiyin Teachers College(Natural Science Edition),2018,17(3):205-211.
  [22]杜炜,许和乾.一类具有p-Laplacian算子的分数阶微分方程边值问题正解的存在性[J].淮阴师范学院学报(自然科学版),2018,17(3):189-193.
  DU Wei, XU Heqian. Existence of positive solutions for boundary value problem with p-Laplacian operators of fractional differential equations[J]. Journal of Huaiyin Teachers College(Natural Science Edition),2018,17(3):189-193.
  [23]JIANG Weihua, SUN Bingzhi. Existence of solutions for functional boundary value problems of second-order nonlinear differential equations system at resonance[J]. Advances in Difference Equations, 2017, 2017(1):269.
  [24]CHEN Yi, TANG Xianhua. Positive solutions of fractional differential equations at resonance on the half-line[J]. Boundary Value Problems, 2012,2012: 64.
转载注明来源:https://www.xzbu.com/1/view-15021829.htm