您好, 访客   登录/注册

分形集上广义调和拟凸函数的一些积分不等式

来源:用户上传      作者:孙文兵

  摘要:给出了分形实线集Rα(O<α≤1)上广义调和拟凸函數的定义,并且建立了一些关于广义调和拟凸函数的推广的Hermite-Hadamard型和Simpson型积分不等式,最后给出了文中得到的积分不等式在分形实线上关于α型特殊均值的一些应用,
  关键词:广义调和拟凸函数;Hermite-Hadamard型不等式;Simpson型不等式;分形集;局部分数阶积分
  中图分类号:0178
  文献标志码:A
  DOI: 10.3969/j.issn.1000-5641.2019.04.007
  0 引言
  函数凸性在数学与应用数学领域起到非常重要的作用,如在优化领域、经济领域等均有重要应用.一些学者由此建立了许多涉及函数凸性的不等式,尤其像著名的Hermite-Hadamard不等式和Simpson不等式.
  对于这两类经典不等式的推广研究,读者可以参考文献[1-10].
  近年来,分形理论受到广泛关注,在分形集上.Yang介绍了局部分数阶微积分及其应用,参见文献[11-12].关于分形空间上局部分数阶微积分的相关结果,读者可以参阅文献[13-16].最近,越来越多的研究者把凸函数的相关理论以及Hermite-Hadamard型不等式的相关结果也推广到分形空间,如文献[17-24]。
  基于分形空间上局部分数阶微积分理论,本文给出了广义调和拟^函数的定义,并且建立了一些涉及广义调和拟凸函数和局部分数阶微积分的推广的Hermite-Hadamard型以及Simpson型不等式,
  [参考文献]
  [1]LATIF M A, SHOAIB M. Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (a, m)-preinvex functions [J]. Journal of the Egyptian Mathematical Society, 2015, 23: 236-241.
  [2]iSCAN i. Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions[J/OL]. J Math, 2014, Article ID 346305, 10 pages. http://dx.doi.org/10.1155/2014/346305.
  [3]CHUN L, QI F. Inequalities of Simpson type for functions whose third derivatives are extended s-convex functionsand applications to means [J] . J Comp Anal Appl, 2015, 19(3): 555 - 569.
  [4]SUN W B, LIU Q. New Hermite-Hadamard type inequalities for (a, m)-convex functions and applications tospecial means [Jj. J Math Inequal, 2017, 11(2): 383-397.
  [5]iSCAN i. Hermite - Hadamard type inequalities for harmonically convex functions [J]. Hacet J Math Stat, 2014,43(6): 935-942.
  [6]ZHANG T, JI A, QI F. Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions[J] Proceedings of the Jangjeon Mathematical Society, 2013, 16(3): 399-407.
  [7]LI Y, DU T. Some Simpson type integral inequalities for functions whose third derivatives are (a, m)-GA-convexfunctions [J]. Journal of the Egyptian Mathematical Society, 2016, 24(2): 175-180.
  [8]QAISAR S, HE C J, HUSSAIN S. A generalizations of Simpson's type inequality for differentiable functionsusing (a, m)-convex functions and applications [J] J Inequal Appl, 2013: 158.
  [9]WANG W, QI J B. Some new estimates of Hermite-Hadamard inequalities for harmonically convex functionswith applications [Jl International Journal of Analysis and Applications, 2017, 11(1): 15-21.
  [10] CHEN F, WU S. Some Hermite-Hadamard type inequalities for harmonically s-convex functions [J] . The ScientificWorld Journal, 2014, Article ID 279158, 7 pages.   [11] YANG X J. Advanced Local Fractional Calculus and Its Applications [Ml. NewYork: World Science Publisher,2012.
  [12] YANG X J. Local Fractional Functional Analysis and Its Applications [M]. Hong Kong: Asian Academic Pub-lisher, 2011.
  [13]YANG X J, GAO F, SRIVASTAVA H M. New theological models within local fractional derivative [J]. Rom RepPhys, 2017, 69(3) , Article ID 113, 1-12.
  [14] YANG X J, MACHADO J T, CATTANI C, et al. On a fractal LC-electric circuit modeled by local fractionalcalculus [Jl Communications in Nonlinear Science and Numerical Simulation, 2017, 47: 200-206.
  [15] YANG X J, GAO, F, SRIVASTAVA H M. Non-differentiable exact solutions for the nonlinear odes defined onfractal sets [J]. Fractals, 2017, 25(4), 1740002 (9pages).
  [16]YANG X J. MACHADO J T. On exact traveling-wave solution for local fractional Boussinesq equation in fractaldomain [J] FYactals, 2017, 25(4), 1740006 (7pages).
  [17] 孫文兵分间上的J新 Hadamard等式及应用 [J] .华东师范大学学报 (自然科学版) , 2017(6) : 33-41.
  [18] MO H X, SUI X, YU D. Generalized convex functions on fractal sets and two related inequalities [Jl Abstractand Applied Analysis, 2014, Article ID 636751 (7 pages).
  [19] ERDENA S, SARIKAYA M Z. Generalized Pompeiu type inequalities for local fractional integrals and its ap-plications [J]. Applied Mathematics and Computation, 2016, 274: 282-291.
  [20] 孙文兵,刘琼数的上广义凸函数的新 Hermite-Hadamard型不等式及其应用 [J]浙江大学学报(理学版), 2017, 44(1):47-52.
  [21] SUN W B. Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type in-equalities [J]. Journal of Nonlinear Sciences and Applications, 2017(10): 5869-5880.
  [22]SET E, UYGUN N, TOMAR M. New inequalities of Hermite-Hadamard type for generalized quasi-convex func-tions with applications [Jl AIP Conference Proceedings, 2016, 1726(1): 1-5.
  [23] MO H X, SUI X. Hermite-Hadamard-type inequalities for generalized s-convex functions on real linear fractalset Ra(0 < a < 1) [Jl Mathematical Sciences, 2017, 11(3): 241-246.
  [24]SARIKAYA M Z, BUDAK H. Generalized Ostrowski type inequalities for local fractional integrals [J]. Proceed-ings of the American Mathematical Society, 2017, 145(4): 1527-1538.
转载注明来源:https://www.xzbu.com/1/view-15025176.htm