您好, 访客   登录/注册

菠菜水培技术研究进展与展望

来源:用户上传      作者:徐佳楠 葛晨辉 王全华 王小丽

  摘 要: 从营养液配方、环境因素、水培驯化等方面综述了有关菠菜水培的研究进展.菠菜水培营养液配方的研究主要集中在配方的筛选与主要营养元素的调整熵.光照、溶解氧、液温是影响水培菠菜生长的重要环境因素.菠菜自身水培适应性可能也是影响菠菜水培的重要因素,但目前鲜有相关报道.最后对今后的菠菜水培技术研究方向提出展望.
  关键词: 菠菜(Spinacia oleracea L.); 水培技术; 营养液配方; 环境因素; 水培适应性
  中图分类号: S 636.1  文献标志码: A  文章编号: 1000-5137(2019)05-0597-08
  Abstract: This paper reviewed the research progress on leafy vegetable hydroponics about nutrient solution,environmental factors,cultivation measures and hydroponic domestication.The researches of spinach nutrient solution are mainly focused on the screening of nutrient solution formula and adjustment of main nutrient elements.Light,dissolved oxygen concentration and liquid temperature are main environmental factors influencing spinach growth under hydroponic conditions.Few researches have been conducted on the hydroponic adaptability of spinach.At last,the future research work on spinach hydroponics was also discussed.
  Key words: Spinacia oleracea L.; hydroponic technology; nutrient solution; environmental factor; hydroponic adaptability
  0 引 言
  随着都市农业结构的调整和消费者对蔬菜质量及食用安全意识的增强,蔬菜水培技术因其在缩短生长周期、减少水肥药施用、增产保质等方面的明显优势,日益成为国内外设施园艺发展的重要技术.蔬菜水培技术既适应大都市对蔬菜产量和品质的高需求,同时也是都市现代农业科技水平的集中体现.然而,目前我国水培蔬菜种类主要以生菜类、白菜类为主.种类单一限制了蔬菜水培技术的应用范围,因此有必要对其他蔬菜品种进行水培专用新品种的选育及配套栽培技术的研究,以丰富水培蔬菜种类,促进水培蔬菜的产业化发展.
  菠菜(Spinacia oleracea L.)是我国普遍栽培的重要绿叶蔬菜之一,其营养丰富,富含多种维生素,生产周期短,复种指数高,产量、产值高,是我国主要出口蔬菜之一.然而与其他叶菜类蔬菜相比,目前市场上的菠菜品种大多是在传统土培和基质栽培的基础上筛选培育而得,而在水环境,尤其是深液流水培系统中缓苗慢、生物产量低,无法展示其优良性状,严重限制了水培菠菜产量和质量的提高.目前国内对菠菜水培的研究主要集中在对已有营养配方的改良上,但改善效果不明显或适用面较窄[1].在筛选和培育水培专用菠菜新品种方面,更是鲜有研究报道.因此有必要总结相关叶菜水培生产经验,开展水培条件下菠菜生命活动规律的研究,为培育高产优质水培菠菜新品种,及提高菠菜水培生产技术提供依据.
   1 菠菜水培营养液研究
  1.1 营养液配方比较
  目前国内菠菜水培采用的营养液配方通常为各类叶菜通用配方,如日本园试、日本山崎等.为筛选最适宜菠菜生长的水培营养液配方,王瑞等[2]比较了0.8倍Hoagland、日本山崎、日本园试、华南农大叶菜A等4个叶菜类常用营养液配方对菠菜品质、生物量动态的影响,采用主成分分析法对生长、品质等多指标进行综合评价,其中,日本园试配方得分最高,是4种配方中最适宜菠菜水培的营养液配方.本课题组比较了同一供氮水平(氮物质的量浓度为8 mmol·L-1)的6个营养液(0.76倍改良Hoagland、0.46倍日本园试、1.23倍日本山崎、0.38倍园艺均衡、华南农大叶菜A、华南农大叶菜B)对菠菜生长的影响,结果发现人工气候室静态水培条件下,用1.23倍日本山崎配方营养液培养的菠菜生物量、株高最高,而同期温室浅液流水培条件下,用1.23倍日本山崎和0.38倍园艺均衡培养的菠菜生物量最高(该成果已被接受,待发表).在各营养液总离子浓度比例保持不变的情况下,导致结果差异的原因可能与营养液中营养素绝对浓度有关,尤其是硝态氮浓度.此外,水培方式以及栽培环境条件的差异,如不同水质、叶菜种类、生长阶段等也会影响营养液配方的适用范围.
  1.2 营养液中营养元素的调节
  为了优化通用配方,很多研究者对营养液中重要元素的浓度和配比对菠菜产量和品质的影响开展了大量研究,其中关于氮(N)、磷(P)、钾(K)的研究报道较多,尤其是氮元素.水培营养液氮素来源主要为硝态氮和铵离子,尤其是硝态氮.孙兴祥等[3]以改进的大泽营养液为水培配方,研究了不同氮素水平(5,10,15,20 mmol·L-1)對4个菠菜品种生物量以及植株不同部位硝酸盐、可溶性糖含量的影响,发现15 mmol·L-1氮素水平下菠菜生物量最高,菠菜的硝酸盐含量随氮素水平的提高呈递增趋势,而可溶性糖含量则随氮素水平的提高呈递减趋势.OKAZAKI等[4]比较了3个硝态氮浓度水平(1,2,4 mmol·L-1)对水培菠菜的影响,发现4 mmol·L-1硝态氮浓度下菠菜的产量、总氮含量和硝酸盐含量均最高.作者还设置了不同物质的量浓度比例的硝态氮/铵态氮(10  ∶ 0,5  ∶ 5,3  ∶ 7)的营养液配方处理,发现3个处理对水培菠菜鲜重、总氮含量影响无显著差异,但随着铵态氮比例的增加,植株硝态氮含量明显降低.其他研究报道也发现类似的规律,当NH4+-N/NO3--N物质的量浓度比值从100  ∶ 0变化到0  ∶ 100,菠菜的生物量、株高、根系长度、硝酸盐和亚硝酸盐累积量等均呈增加趋势,营养液中适当增铵能提高菠菜品质,但不能增加菠菜的产量.NH4+-N/NO3--N比值为0  ∶ 100时,菠菜茎叶生物量最高,随着NH4+-N/NO3--N 比例的增加,菠菜的生物量和硝酸盐累积量均呈递减趋势[5-6],水溶性糖含量则呈递增趋势[6].除硝态氮和铵态氮外,适当配施有机氮能显著提高营养效应,改善作物品质.不同物质的量浓度比例的硝态氮/甘氨酸处理(100  ∶ 0,75  ∶ 25,50  ∶ 50,25  ∶ 75,0  ∶ 100)下,甘氨酸部分替代硝态氮降低了菠菜生物量,但同时硝态氮含量也显著降低[7].   磷元素是植物体内蛋白质、核酸及某些酶的组成成分,对植物新陈代谢有着重要影响.在5个磷浓度水平(0.2,0.4,0.6,0.8,1.0 mmol·L-1)的生菜水培中,磷水平为0.6 mmol·L-1时生菜产量最大[8].汪建飞等[9]在菠菜水培中设置了3个磷水平(0,0.5,1.0 mmol·L-1)发现在硝态氮和铵态氮混合培养的情况下,缺磷会显著抑制菠菜对铵态氮和硝态氮的吸收,而且对硝态氮的吸收抑制作用大于铵态氮;在铵硝比相同时,随着营养液中磷素供应量的增加,菠菜茎叶中的硝酸还原酶活性显著增加,缺磷会严重抑制谷氨酰胺合成酶的活性.
  钾可活化多种酶,能促进氮吸收、蛋白质与蔗糖合成及碳水化合物转化,施钾可以增加作物产量,改善作物品质[10],但是钾浓度过高则会降低作物的产量及品质[11].苏苑君等[12]認为当钾物质的量浓度为4 mmol·L-1时,水培生菜能获得较好的产量及品质,且矿物质元素利用效率较高.适当的氮钾配比能明显提高蔬菜硝酸还原酶活性,增加蔬菜粗蛋白质和维生素C (Vc)含量[13].氮钾物质的量浓度配比为8  ∶ 4时水培菠菜能获得较大的生物量并能最大限度地降低菠菜中的硝酸盐含量[14].相似的是,NIU等[15]跟踪测量了叶菜营养液膜循环系统营养液中大量营养素的浓度变化,发现K是吸收最快的元素,其次是N和P,建议水培后期重点补充K.
  微量元素也是营养液元素的重要组成部分.铁(Fe)参与植物体光合与呼吸作用、叶绿素生物合成、氮的固定等生理代谢过程.缺铁会使叶绿体结构发育不完整,导致植株叶片缺铁黄化,光合能力下降,严重缺铁通常会导致生物量显著降低.JIN等[16]发现营养液中轻度缺铁(FeEDTA物质的量浓度为1 μmol·L-1)比缺铁(0 μmol·L-1)和Fe供应充足(10,50 μmol·L-1)条件的菠菜地上部分生物量更高,且轻度缺铁处理的菠菜可食部分硝酸盐浓度最低,而可溶性糖、可溶性蛋白质和抗坏血酸的含量均高于缺铁处理的菠菜,说明轻度缺铁栽培的菠菜不仅产量高,而且品质更好.除铁元素外,李登超等[17]发现营养液中少量的硒元素(质量浓度不大于0.1 mg·L-1)可以提高水培菠菜产量,但硒浓度高于0.1 mg·L-1时,会产生毒害作用甚至抑制菠菜的生长.
  1.3 其他外源物质
  除纯无机营养液外,目前营养液配方研究的新方向是在纯无机营养液配方中添加有机成分物质,目的是促进蔬菜生长,改善品质.如在菠菜水培营养液中添加的抗坏血酸,能够防止水培过程中菠菜根茎过于老化,在保持菠菜茎叶鲜嫩、产量大的同时,提供良好的口感(专利公开号CN104151076A).5-氨基乙酰丙酸(ALA)[18]、亚精胺[19]、水杨酸(SA)[20]能减轻盐胁迫对菠菜生长的影响,对缓解水培营养液中相对较大的离子浓度波动可能也具有一定的作用.外施赤霉素(GA)能促进菠菜茎的伸长[21],胺鲜酯(DA-6)、复硝酚钠(CSN)、吲哚丁酸(IBA)及萘乙酸(NAA)灌根能促进菠菜根系生长,提高菠菜产量[22],但在水培条件下的生长表现还有待验证.
  2 环境因素
  2.1 光
  环境光是植物生长最重要的环境因素之一.叶菜水培大多是在设施环境下进行的,通常需要人工补光.不同的光强和光质条件会对叶菜的生长和品质产生显著影响.王灿等[23]在模拟6%和23%室外光通量的两种室内光通量下,对比研究了7种叶类蔬菜的成活率、鲜重、茎高和根长的差异,发现适宜蔬菜种植的室内光通量应达到室外的23%.PROIETTI等[24]发现与对照相比(800 μmol·m-2·s-1)相比,较低光通量(200 μmol· m-2·s-1)下生长的菠菜植株表现出生长缓慢,叶面积减少,根冠比增加的现象,且抗坏血酸含量减少而草酸和硝酸盐含量增加.
  除光通量外,光质也会显著影响植物生长.人工光源下可以通过调节光质比例调控菠菜生长和品质.YORIO等[25]比较了相同光通量条件下,红色LED(660 nm)、红色LED+10% 蓝色(400~500 nm)荧光灯(BF)及冷白色荧光灯(CWF)对菠菜生长的影响,结果发现红色LED处理下的菠菜干重显著低于CWT和添加10% BF的红色LED光处理.此外,添加10% BF的红色LED处理下的菠菜总干重明显低于CWF处理,表明在红色LED光中加入蓝光仍然不足以实现这些作物的最大化生长.OHASHI-KANEKO等[26]认为在300 μmol· m-2·s-1光通量条件下,红光LED比用白光LED更能促进菠菜地上部分干重的积累,降低硝态氮含量,蓝光虽然能一定程度提高类胡萝卜素的含量,但显著降低了菠菜地上部分干重,单纯蓝光不适用于菠菜栽培.相反,黄碧阳等[27]发现,在光通量为120 μmol·m-2·s-1条件下,菠菜在红蓝混合光(光通量(红光)  ∶ 光通量(蓝光)=1  ∶ 1)下的光能利用率比用白光、红光、蓝光单一光源的处理高,地上部生长最好.与白光相比,当红、蓝光光通量比例为3  ∶ 1时,菠菜可溶性糖含量、生物产量、株高达到最大值,最大叶面积和叶片数有较高值,蛋白质含量较高,硝酸盐含量最低,且具有适合的根冠比,菠菜地下部和地上部生长平衡,有利于提高产量[28].黄传辉等[29]指出,植物工厂LED植物培养箱中菠菜最适的光环境为:光通量(红光)  ∶ 光通量(蓝光)=80  ∶ 20,光周期为13 h(光照)/11 h(黑暗),品质指标最适光环境为光通量(红光)  ∶ 光通量(蓝光)=120  ∶ 30,光周期为9 h(光照)/15 h(黑暗).
  2.2 氧 气
  与土培、基质栽培环境相比,水培环境下,根系环境发生很大的变化,水中溶解氧(DOC)浓度低,容易导致根系缺氧,产生低氧胁迫,影响水培植物生长.充足的氧气供应对水培植物生长至关重要.CHUN等[30]比较了不同DOC浓度梯度(26,130,260,380 μmol·L-1)对水培生菜生长的影响,发现根系呼吸速率随着营养液中DOC浓度的增加而增加,且在最高DOC浓度下水培生菜根系生长量和蒸腾量最大.不同植物对溶解氧的需求不同.SEO等[31]比较了不同DOC浓度对菠菜生长的影响,结果发现生菜对供试不同DOC浓度梯度不敏感,而菠菜需要在DOC浓度高的营养液中生长,最适宜的DOC浓度是20 μmol·L-1,其次10 μmol·L-1,最后是5 μmol·L-1,且高DOC浓度下水培菠菜光合速率最高,钙(Ca)和镁(Mg)元素的含量也较高.生产上可通过增氧泵通氧、悬根水培,增加营养液循环以及采用营养液膜(NFT)栽培法等措施增加营养液中的氧气供应,保证水培菠菜的生长.   2.3 温 度
  温度是影响水培植物生长的重要因素之一.GENT[32]研究发现生菜相对生长速度(RGR)更容易受日照辐射的影响,而受温度和营养液硝态氮浓度影响不大;相反,菠菜更容易受温度和营养液硝态氮浓度影响.SEO等[31]也发现不管营养液的DOC浓度如何,夏季高温是导致水培菠菜死亡的直接原因,而生菜不受营养液温度的影响.但没有关于菠菜水培适宜温度范围的详细报道.
  3 菠菜自身因素及其他
  菠菜自身对水培环境的适应能力是影响其水培生产表现的关键因素之一.不同作物对环境条件的适应性不同,同一作物不同品种对水培环境的适应性也有差异.SINHA等[33]发现小麦品种间对不同栽培介质(水培、基质、土培)的响应存在较大差异,说明可以通過品种筛选获得水培适应性能力高的作物品种.根系是影响植物水培适应性的关键器官.水培环境下,根系环境发生很大的变化,根系环境的变化又会显著影响植物对水分和养分的吸收,进而影响植物的生长[34].如何利用菠菜各器官尤其是根系的适应性反应以充分挖掘菠菜自身对水环境的适应潜力,是提高菠菜水培生产效率的关键之一.已有研究报道水培环境下植物能够改变地上部分与根系的形态,及微观结构以适应低氧的水培环境.如耐水培的植物,其水环境中的植物根皮层内一般会形成发达的通气组织,以利于根系供氧[35].水培低氧环境还会诱导不定根、根中径向氧气损失屏障的形成,以及茎基或下胚轴肥肿等形态结构的变化.这些变化均有利于地上部的氧气向根系扩散,缓解低氧对植物的胁迫作用[36-37].目前为止在菠菜水培适应性机理方面的研究未见报道,后续可以从菠菜根系微观结构、生理生化及分子机制方面开展相关研究.
  还有研究发现,水培体系由于缺乏培养介质对根际分泌物的吸附、中和,在长期水培过程中,蔬菜根系分泌出的毒性物质经累积后会造成自毒危害,抑制蔬菜生长[38].常见的各类蔬菜如豌豆[39]、生菜[40]、黄瓜[41-42]、西红柿[43]、芦笋[44]等都可释放自毒物质,采用活性炭吸附、光催化法等方法可去除植物自毒物质,减轻其对植物的生长抑制作用[38].菠菜根际分泌物是否会对水培菠菜的生长产生抑制作用还未见报道.
  4 展 望
  菠菜是重要的生、熟食绿叶蔬菜,在水培生产中具有广阔的应用前景.开发适合多种水培生产模式的菠菜水培生产技术,培育水培专用高产优质菠菜新品种是实现菠菜水培规模化生产的前提.然而与水培生菜相比,目前菠菜水培技术研究基础薄弱,无论是关于营养液配方还是环境因素调控方面的报道均较少,在菠菜水培专用品种的选育方面更是匮乏.今后有必要从以下几个方面重点开展菠菜水培技术相关的基础研究:1) 继续开展对菠菜水培营养液关键营养元素最适浓度的研究,明确菠菜不同生育期对各营养元素需求的动态变化,尤其是N,P与K的绝对浓度与浓度配比;2) 考虑环境因素相互之间可能存在耦合效应,开展菠菜水培环境的多因素综合调控研究,探索最优的综合环境调控技术参数;3) 深入研究菠菜根系应对液温变化与低氧胁迫的响应机制,与综合调控策略;4) 参考其他植物水生驯化机制,开展菠菜水培驯化相关的形态、生理生化特征研究,建立菠菜耐水培品种评价指标体系,筛选耐水培菠菜种质资源,并在此基础上进一步探究菠菜水培驯化机制,挖掘菠菜根系水生相关基因.
  参考文献:
  [1] 王瑞,胡笑涛,苏苑君.菠菜营养液栽培的研究进展与展望 [J].长江蔬菜,2014(14):7-10.
  WANG R,HU X T,SU Y J.Research progress and prospect on nutrient solution cultivation of spinach [J].Journal of Changjiang Vegetables,2014(14):7-10.
  [2] 王瑞,胡笑涛,王文娥,等.水培菠菜不同配方的产量、品质主成分分析研究 [J].北方园艺,2016(10):27-31.
  WANG R,HU X T,WANG W E,et al.Study on different nutrient solution formula hydroponics on spinach yield,quality and major elements of consumption [J].Northern Horticulture,2016(10):27-31.
  [3] 孙兴祥,王健,周毅,等.不同氮素水平对菠菜生长和品质的影响 [J].南京农业大学学报,2005(3):126-128.
  SUN X X,WANG J,ZHOU Y,et al.Effects of different nitrogen levels on the growth and quality of spinach [J].Journal of Nanjing Agricultural University,2005(3):126-128.
  [4] OKAZAKI K,OKA N,SHINANO T,et al.Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution [J].Plant and Cell Physiology,2008,49(2):170-177.
  [5] 邢素芝,汪建飞,李孝良,等.氮肥形态及配比对菠菜生长和安全品质的影响 [J].植物营养与肥料学报,2015,21(2):527-534.
  XING S Z,WANG J F,LI X L,et al.Different nitrogen fertilizers and ratios effect on growth,safety and quality of spinach [J].Journal of Plant Nutrition and Fertilizer,2015,21(2):527-534.   [6] 王健,孫兴祥,沈其荣,等.增铵对菠菜生长及品质的影响 [J].土壤通报,2006(2):2326-2329.
  WANG J,SUN X X,SHEN Q R,et al.Effects of enhanced ammonium nutrition on the growth and quality of spinach [J].Chinese Journal of Soil Science,2006(2):2326-2329.
  [7] LIU X,WANG L,LI Z,et al.Nitrate/Gly ratios in nutrition influenced the growth and amino acid composition in spinach (Spinacia oleracea L.) [J].Journal of Plant Nutrition,2013,37(5):765-776.
  [8] 苏苑君,胡笑涛,王文娥,等.磷对水培生菜生长及矿质元素动态吸收的影响 [J].中国生态农业学报,2015,23(10):1244-1252.
  SU Y J,HU X T,WANG W Z,et al.Effect of phosphorus on dynamic growth and nutrient absorption of hydroponic [J].Chinese Journal of Eco-Agriculture,2015,23(10):1244-1252.
  [9] 汪建飞,董彩霞,谢越,等.铵硝比和磷素营养对菠菜生长、氮素吸收和相关酶活性的影响 [J].土壤学报,2006(6):954-960.
  WANG J F,DONG C X,XIE Y,et al.Effects of NH4+-N/ NO3--N ratio and phosphorus levels on growth,nitrogen uptake and relevant enzymes activity of spinach (Spinacia oleracea L.) [J].Acta Pedologica Sinica,2006(6):954-960.
  [10] 陶其骧,罗奇祥,刘光荣,等.施钾对改善作物产品品质的效果 [J].江西农业学报,1999,11(3):29-34.
  TAO Q X,LUO Q X,LIU G R,et al.Effect of K application on quality of crop products [J].Acta Agriculture Jiangxi,1999,11(3):29-34.
  [11] 孙红梅,李天来,须晖,等.不同氮水平下钾营养对大棚番茄产量及品质的影响 [J].沈阳农业大学学报,2000,31(1):68-71.
  SUN H M,LI T L,XU H,et al.Effects of potassium fertilizers on yield and quality of tomato under differrent application of nitrogen fertilizers [J].Journal of Shenyang Agricultural University,2000,31(1):68-71.
  [12] 苏苑君,胡笑涛,王文娥,等.钾浓度对水培生菜生长及矿质元素动态吸收的影响 [J].西北农林科技大学学报(自然科学版),2016,44(8):191-196,204.
  SU Y J,HU X T,WANG W E,et al.Effect of potassium concentration on growth and dynamic absorption of mineral elements of hydroponic lettuce [J].Journal of Northwest A&F University (Natural Science Edition),2016,44(8):191-196,204.
  [13] 方素萍.氮钾营养对菠菜生长、硝酸盐累积的影响及机理研究 [D].杭州:浙江大学2002.
  FANG S P.Nitrate accumulation in spinach (Spinacia oleracea L.) [D].Hangzhou:Zhejiang University,2002.
  [14] 于洪波.氮钾营养对蔬菜累积草酸的调控及其机理研究 [D].杭州:浙江大学,2002.
  YU H B.Manipulation of oxalate accumulation in vegetable crops through Nitrogen (N) and Potassium (K) [D].Hangzhou:Zhejiang University,2002.
  [15] NIU G H,SUN Y P,MASABNI J G.Impact of low and moderate salinity water on plant performance of leafy vegetables in a recirculating NFT System [J].Horticulturae,2018,4(1):6.
  [16] JIN C W,LIU Y,MAO sQ Q,et al.Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.) [J].Food Chemistry,2013,138(4):2188-2194.   [17] 李登超,朱祝军,徐志豪.硒对菠菜抗氧化系统及过氧化氢含量的影响 [J].园艺学报,2002(6):547-550.
  LI D C,ZHU Z J,XU Z H.Effects of selenium on antioxidative system and H2O2 content in spinach [J].Acta Horticulturae Sinica,2002(6):547-550.
  [18] 王魏,邹志荣,乔飞,等.外源ALA对NaCl胁迫下菠菜生理特性的影响 [J].西北农业学报,2008(1):137-141,156.
  WANG W,ZOU Z R,QIAO F,et al.Effects of exogenous ALA on physiological characteristics of spinach under NaCl stress [J].Acta Agriculturae Boreali-Occidentalis Sinica,2008(1):137-141,156.
  [19] 王颖,郭世荣,束胜,等.外源亚精胺对盐胁迫下菠菜叶绿素合成前体含量的影响 [J].西北植物学报,2015(10):2026-2034.
  WANG Y,GUO S R,SHU S,et al.Effects of exogenous spermidine on chlorophyll precursors content of spinach plants under salt stress [J].Acta Botanica Boreali-Occidentalia Sinica,2015(10):2026-2034.
  [20] 陈冠男,刘金香,曹宇,等.水杨酸对盐胁迫下菠菜葉表皮气孔开度的调节 [J].郑州轻工业学院学报(自然科学版),2014(6):33-38.
  CHEN G N,LIU J X,CAO Y,et al.The adjustment of salicylic acid on stomatal aperture of Spinacia oleracea L.leaf epidermis under salt stress [J].Journal of Zhengzhou University of Light Industry (Natural Science Edition),2014(6):33-38.
  [21] ZEEVAART J A,GAGE D A,TALON M.Gibberellin A1 is required for stem elongation in spinach [J].Proceedings of the National Academy of Sciences of the United States of America,1993,90(15):7401-7405.
  [22] 罗树生,胡华敏,王宗抗,等.植物生长调节剂灌根对菠菜的作用效果研究 [J].广东农业科学,2012,39(19):64-66,70.
  LUO S S,HU H M,WANG Z K,et al.Regulation effects of plant growth regulators on Spinacia oleracea L.by soil drench application [J].Guangdong Agricultural Sciences,2012,39(19):64-66,70.
  [23] 王灿,苏艳,李树,等.不同光照强度对室内水培叶用蔬菜生长的影响 [J].天津农学院学报,2014,21(2):18-20,23.
  WANG C,SU Y,LI S,et al.Effects of different light intensity on indoor hydroponic leafy vegetable growth [J].Journal of Tianjin Agricultural University,2014,21(2):18-20,23.
  [24] PROIETTI S,MOSCATELLO S,LECCESE A,et al.The effect of growing spinach (Spinacia oleracea L.) at two light intensities on the amounts of oxalate,ascorbate and nitrate in their leaves [J].Journal of Horticultural Science and Biotechnology,2004,79(4):606-609.
  [25] YORIO N C,GOINS G D,KAGIE H R,et al.Improving spinach,radish,and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation [J].HortScience,2001,36(2):380-383.
  [26] OHASHI-KANEKO K,TAKASE M,KON N,et al.Effect of light quality on growth and vegetable quality in leaf lettuce,spinach and komatsuna [J].Environment Control in Biology,2007,45(3):189-198.   [27] 黄碧阳,林碧英,李彩霞,等.LED光质对菠菜生长和光合生理特性的影响 [J].福建农林大学学报(自然科学版),2018,47(4):403-408.
  HUANG B Y,LIN B Y,LI C X,et al.Effects of LED light quality on growth and photosynthetic physiological characteristics in spinach [J].Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2018,47(4):403-408.
  [28] 黄碧阳,林碧英,李彩霞,等.LED红蓝光配比对菠菜生长及品质的影响 [J].江苏农业科学,2018,46(7):131-135.
  HUANG B Y,LIN B Y,LI C X,et al.Effects of red and blue ratios of LED on growth and quality of spinach [J].Jiangsu Agricultural Sciences,2018,46(7):131-135.
  [29] 黄传辉.菠菜生长最适光环境的研究 [D].福州:福建农林大学,2016.
  HUANG C H.The optimal light environment for spinach growth [D].Fuzhou:Fujian Agriculture and Forestry University,2016.
  [30] CHUN C,TAKAKURA T.Rate of root respiration of lettuce under various dissolved oxygen concentrations in hydroponics [J].Environment Control in Biology,1994,32(2):125-135.
  [31] SEO T C,KIM Y C,LEE J W,et al.The effect of dissolved oxygen concentration on the growth and nutrient uptake of spinach and lettuce grown hydroponically in summer season [J].Journal of the Korean Society for Horticultural Science,2002,43(4):421-424.
  [32] GENT M P N.Factors affecting relative growth rate of lettuce and spinach in hydroponics in a greenhouse [J].Hortscience,2017,52(12):1742-1747.
  [33] SINHA S K,RANI M,KUMAR A,et al.Natural variation in root system architecture in diverse wheat genotypes grown under different nitrate conditions and root growth media [J].Theoretical and Experimental Plant Physiology,2018,30(3):223-234.
  [34] 牛曉丽.作物根系对局部供应水氮的响应及其生理机制 [D].杨凌:西北农林科技大学,2016.
  NIU X L.Effects of partial supply of water and nitrogen on root growth and absorption capacity [D].Yangling:Northwest A&F University,2016.
  [35] 樊明寿,张福锁.植物通气组织的形成过程和生理生态学意义 [J].植物生理学通讯,2002(6):615-618.
  FAN M S,ZHANG F S.Aerenchyma formation in plant and its physiological and ecological significance [J].Plant Physiology Communications,2002(6):615-618.
  [36] 马月花,郭世荣,杜南山,等.低氧胁迫对黄瓜幼苗生长和形态结构及有关酶活性的影响 [J].南京农业大学学报,2016,39(2):213-219.
  MA Y H,GUO S R,DU N S,et al.Effect of hypoxia stress on growth,morpho-anatomical acclimation and activity of involved enzymes of cucumber seedlings [J].Journal of Nanjing Agricultural University,2016,39(2):213-219.
  [37] 汪天,王素平,郭世荣,等.植物低氧胁迫伤害与适应机理的研究进展 [J].西北植物学报,2006(4):847-853.
  WANG T,WANG S P,GUO S R,et al.Research advance about hypoxia-stress damage and hypoxia-stress-adapting mechanism in plants [J].Acta Botanica Boreali-Occidentalia Sinica,2006(4):847-853.   [38] 刘文科,杨其长.设施无土栽培营养液中植物毒性物质的去除方法 [J].北方园艺,2010(16):69-70.
  LIU W K,YANG Q C.Remove of phytotoxic substances from nutrient solution of soilless cultureunder cover [J].Northern Horticulture,2010(16):69-70.
  [39] 韩旭,杜公福,牛玉,等.水培法收集甜椒根系分泌物化學成分鉴定 [J].长江蔬菜,2016(4):47-52.
  HAN X,DU G F,NIU Y,et al.Chemical components identification on root exudates of Capsicum Fructescens L.by nutrient solution culture [J].Journal of Changjiang Vegetables,2016(4):47-52.
  [40] LEE J G,LEE B Y,LEE H J.Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.) [J].Scientia Horticulturae,2006,110(2):119-128.
  [41] 邹丽芸.西瓜连作障碍中自毒作用的研究 [D].杭州:浙江大学,2004.
  ZOU L Y.Study on autotoxicity in continuous cropping obstacle of watermelon plant [D].Hangzhou:Zhejiang University,2004.
  [42] YU J Q,MATSUI Y.Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.) [J].Journal of Chemical Ecology,1994,20(1):21-31.
  [43] YU J Q,MATSUI Y.Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato [J].Soil Science and Plant Nutrition,1993,39(4):691-700.
  [44] SUNADA K,DING X G,UTAMI M S,et al.Detoxification of phytotoxic compounds by TiO2 photocatalysis in a recycling hydroponic cultivation system of asparagus [J].Journal of Agricultural and Food Chemistry,2008,56(12):4819-4824.
  (责任编辑:顾浩然)
转载注明来源:https://www.xzbu.com/1/view-15068053.htm