胶质母细胞瘤信号通路的研究
来源:用户上传
作者:
摘要:胶质母细胞瘤(GBM)是胶质瘤中恶性程度最高的脑部肿瘤,其死亡率和复发率较高。目前GBM发生发展机制尚不明确,无特效治疗手段。常见的治疗方法有手术切除、放疗及化疗等,但其预后差,因此寻找GBM相关信号通路可为了解其发病机制、靶向治疗提供指引。目前,研究发现p53途径、MAPK途径、PI3K/AKT途径以及Notch途径是参与GBM的重要通路;除此之外,还有其他的信号通路也陆续被发现。本文通过对p53信号通路、MAPK信号通路、PI3K/AKT信号通路、Notch信号通路以及其他信号通路在GBM中的作用进行综述,旨在为临床治疗GBM提供参考。
关键词:胶质母细胞瘤;信号通路;分子靶向
中图分类号:R739.41 文献标识码:A DOI:10.3969/j.issn.1006-1959.2019.23.009
文章编号:1006-1959(2019)23-0033-06
Study on Glioblastoma Signaling Pathway
ZHANG Wei-bin1,JING Guo-jie2
(1.Graduate School of Guangdong Medical University,Zhanjiang 524000,Guangdong,China;
2.Department of Neurosurgery,Huizhou First People's Hospital,Guangdong Medical University,Huizhou 516000,
Guangdong,China)
Abstract:Glioblastoma (GBM) is the most malignant brain tumor in glioma, with a high mortality and recurrence rate. At present, the mechanism of development of GBM is still unclear, and there is no specific treatment. Common treatment methods include surgical resection, radiotherapy and chemotherapy, but its prognosis is poor. Therefore, finding a signal pathway related to GBM can provide guidance for understanding its pathogenesis and targeted therapy. At present, the study found that the p53 pathway, MAPK pathway, PI3K/AKT pathway and Notch pathway are important pathways involved in GBM; in addition, other signaling pathways have been discovered. This article reviews the role of p53 signaling pathway, MAPK signaling pathway, PI3K/AKT signaling pathway, Notch signaling pathway and other signaling pathways in GBM, aiming to provide reference for clinical treatment of GBM.
Key words:Glioblastoma;Signaling pathway;Molecular targeting
胶质母细胞瘤(glioblastoma,GBM)是一种源自星形胶质细胞的恶性脑肿瘤,在WHO 2016中枢神经系统肿瘤分类中属于恶性程度最高的Ⅳ级脑肿瘤,是最常见的原发性恶性中枢神经系统肿瘤,其发病率约3.2/10万[1-3]。GBM多发于大脑半球,以额叶最多见,其呈弥漫性、浸润性生长,具有自身的血液供应,生长迅速,容易侵入正常的脑组织,手术不易完全切除,且术后易原位复发。GBM的临床表现主要包括颅内压增高、神经功能及认知功能障碍和癫痫发作三大类。目前,GBM的主要治疗方法是手术切除后联合放化疗,尽管采用综合治疗方案,GBM的死亡率和复发率非常高[4,5]。GBM在异质性肿瘤中的发生机制和发展机制主要涉及遗传学、蛋白质组学、免疫学等方面。根据分子机制研究的结果,新的治疗药物和手段已经出现在临床试验中,如自体树突状细胞疫苗和溶瘤病毒疗法[6,7]。由于GBM的潜在生物学机制尚不明確、预后差,因此发现GBM的异常信号传导途径和关键分子将有助于了解其发病机制及靶向治疗。本文主要通过对p53信号通路、MAPK信号通路、PI3K/AKT信号通路、Notch信号通路以及其他信号通路在GBM的研究作一综述,旨在为GBM的基础及临床研究提供一定的指引和总结。
1 p53信号通路
p53是由抑癌基因TP53编码的蛋白,主要分布在细胞和核内,正常功能是监视细胞周期中的DNA损伤以及修复、甚至使不能修复的异常细胞凋亡,从而防止癌变细胞产生以及增殖[8]。在GBM中,p53主要处于低表达状态,通过影响细胞凋亡、细胞周期以及血管生成和转移的信号途径而发挥其肿瘤抑制作用,其中p21、Gadd45和Reprimo是p53靶向调控细胞周期的分子[9-11];Fas、Bax以及半胱天冬酶6是p53靶向调控细胞凋亡的分子[12];低氧诱导因子(HIF)和NADPH氧化酶4(NOX4)是p53靶向调控血管生成和转移的分子[13,14]。有研究表明[15],p53的突变与GBM的进展有关,当p53失活后,GBM更易侵袭,且癌细胞增殖更加明显。另有研究发现[16],p53突变失活后,GBM细胞系对化疗药物更易产生耐药性。 p53还能调控长链非编码RNA(long non-coding RNA,lncRNA)。Voce DJ等[17]通过研究替莫唑胺治疗GBM的机制,结果表明p53通过结合转移相关肺腺癌转录本1(MALAT1)编码区近端抑制了MALAT1的生成,进而增强了化疗药物的治疗效果。除了细胞周期蛋白依赖性激酶抑制剂2A(CDKN2A)/ARF、MDM2(一种原癌基因)和MDM4(p53调控因子)已被证明在GBM可以负调控p53[18],目前研究还发现许多新的上游因子可影响p53信号通路,进而导致GBM的发生发展。Lin Y等[19]研究表明,天冬酰胺基内肽酶可以水解灭活p53,促进GBM的进程。Brook L等[20]研究表明,HR(Hairless)通过增强p53依赖的反式激活,促进GBM细胞凋亡。Zhu H等[21]研究发现,在GBM的脑胶质瘤干细胞中配对盒子3(paired box 3,PAX3)高表达,而且高表达的PAX3的肿瘤中有更多的p53突变,进一步提示PAX3可能与p53基因的启动子特异性结合,并在转录上抑制p53的表达,影响脑胶质瘤干细胞分化、增殖和迁移。另有研究表明[22],干扰Septin 9和Septin 2后可能通过p53/p21轴和MEK/ERK激活而影响GBM增殖生长。
由于高通量技术的完善,越来越多的研究表明非编码的RNA是调控肿瘤生物学过程的重要调控因子,如微RNAs(microRNAs,miRNA)和lncRNA。有研究发现[23,24],GBM中miRNA和lncRNA可调控p53通路,在GBM中miR-124、miR-125b的水平是下调的,它们可以靶向p53信号通路上的抑制因子,降低GBM的细胞增殖和细胞周期进展。Chen Y等[25]研究发现,在GBM中砷抗性蛋白2(核RNA帽结合复合物的一个组成部分)可能通过抑制miR-6798-3p而促进p53和p21上调。除了miRNA外,目前还发现两种lncRNA,分别是H19和尿路上皮癌相关1(urothelial cancer associated 1,UCA1),其分别通过与miR-140和miR-182相互作用调节GBM进程,其中miR-140和miR-182能够促进蛋白磷酸酶1调节亚基13(对TP53水平上调的因子)而使细胞增殖减少和细胞凋亡增加,而H19和UCA1降低了这些miRNA的表达和活性,因此在GBM中具有p53依赖的致癌活性[26,27]。有研究通过对p53信号通路的MDM2抑制剂AMG232进行研究,结果表明AMG232对GBM的抗肿瘤活性及其对p53信号的影响都有显著表现[28,29]。由以上的研究可知,p53信号通路是GBM发生和进展中的关键途徑,对其上下游因子的研究探索可能为GBM治疗提供更多的可能性。
2 MAPK信号通路
丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)是丝氨酸-苏氨酸激酶,其在细胞增殖,细胞粘附,血管生成,侵入和转移中发挥重要作用[30]。MAPKs由三个主要亚家族组成:Ras/MAPK,c-Jun氨基末端激酶(JNK)和p38激酶[31],其中Ras/MAPK信号通路的激活是通过肿瘤中的一系列生物级联反应参与细胞增殖和分化[32,33]。目前主流认为MAPK信号通路的激活是GBM发生所必需的[34],MAPK信号传导途径在GBM中与细胞增殖、血管生成和侵袭有关。如Ras/MAPK通路有助于GBM中血管内皮生长因子表达的上调和血管生成的诱导[35];同源异型盒C6通过MAPK途径促进GBM转移和增殖[36];另有研究表明[37],MAPK1/JNK/基质金属肽酶7途径则是抑制了GBM的进展;此外,有多项研究发现[32,33,38],靶向p38 MAPK通路的激活可以促进GBM细胞的凋亡。这可能是由于MAPK通路下游的因子复杂,影响的下游因子不同,才导致了不同的GBM表型,但目前大多数MAPK通路的激活与GBM的恶性表型是呈正相关关系。
3 PI3K/AKT信号通路
磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)是一种胞内磷脂酰肌醇激酶,其具有丝氨酸/苏氨酸(Ser/Thr)激酶的活性,也具有磷脂酰肌醇激酶的活性,PI3K家族的成员是参与多种细胞过程的脂质激酶,包括增殖、分化、迁移和代谢[39]。AKT是一种丝氨酸/苏氨酸特异性蛋白激酶,在多种细胞生长过程中发挥关键作用,如葡萄糖代谢、凋亡、细胞增殖、转录和细胞迁移[40]。在正常情况下,PI3K/AKT可以靶向mTOR信号通路调控蛋白的合成、靶向血管内皮生长因子(VEGF)信号通路和叉头蛋白转录因子3A(FOXO3a)信号通路参与细胞增殖、血管生成以及DNA修复,除此之外还会作用于细胞周期相关蛋白以及凋亡蛋白影响细胞的增殖和存活[41-44]。众所周知,PI3K/AKT信号失调与多种肿瘤有关。而在GBM中也有相关研究发现白细胞介素-17A可通过PI3K/AKT信号通路促进细胞的迁移和侵袭[45];LIM和SH3蛋白1在GBM中是促癌因子,以PI3K/AKT依赖性机制调节GBM细胞增殖和化学敏感性[46];miR-1231和miR-124-3p作为肿瘤抑制因子可以调控PI3K/AKT信号通路抑制GBM细胞生长以及血管形成[47,48];miR-203参与PI3K/AKT途径控制GBM细胞的DNA修复[49];赖氨酸乙酰基转移酶6A是一种染色质调节剂, 可促进组蛋白修饰和癌变,其表达被发现于GBM生存相关,并被证实能增强PI3K/AKT信号传导以 及肿瘤的发生[50]。关于针对PI3K/AKT信号通路 的Buparlisib是新一代的PI3K的抑制剂,其稳定 性高和副作用低,目前已经进入了临床Ⅰ期[51]。总之,PI3K/AKT在GBM的发生和发展中起重要作用,而且该信号途径可能成为GBM引人注目的治疗靶标。 4 Notch信号通路
Notch信号通路是存在于大多数生物体中且非常保守的细胞信号传导系统,其在调节干细胞增殖分化和细胞凋亡等过程中起到非常关键作用[52]。Notch级联由Notch和Notch配体以及将Notch信号传递至细胞核的细胞内蛋白质组成;在哺乳动物细胞中,Notch充当细胞质受体,有四种同源蛋白被称为Notch1、Notch2、Notch3和Notch4,它们可以结合两个配体家族:Delta型(DLL1-3和DLL4)和锯齿状(Jagged1和Jagged2)[53]。已有相关研究发现[54],Notch信号通路在肿瘤干细胞的自我更新、胚胎分化以及发育方面起到决定细胞命运的调节功能作用,其与肿瘤干细胞分化成内皮细胞、免疫细胞等多种生物学特性有密切关系。Notch信号在许多癌症中失调,包括结直肠癌、肝癌、前列腺癌[55],目前也有许多报道提示在GBM中发现Notch信号通路的异常激活。另有研究发现[56],Notch信号通路中的Notch1、Notch4、DLL1、DLL4和Jagged1相对于正常脑细胞而言,其在GBM细胞中为高表达。Notch1可以与NF-κB(p65)结合,促进GBM细胞增殖和凋亡减少,还可靶向Hes1影响GBM干细胞的生长、分化和侵袭性,并且能调节趋化因子系统(CXC基序趋化因子配体12/CXC基序趋化因子受体4),从而促进神经胶质瘤干细胞的侵袭、自我更新和生长[57]。MiR-181a靶向结合Notch2会导致GBM干细胞的形成受到抑制[58]。N-乙酰半胱氨酸被发现通过Itch依赖的溶酶体途径促进Notch2降解,进而阻止GBM细胞的增殖、迁移和侵袭,并可能诱导其凋亡[59]。而Notch3主要是参与GBM细胞干性的调节[60]。关于Notch4在GBM中的作用,一项免疫组织化观察到DLL4和Notch4主要分布在血管内皮上,而比较少分布在肿瘤细胞上,且结果分析表明DLL4和Notch4的表达量呈正相关[61],这提示DLL4-Notch4信号通路可能参与GBM的血管生成。从以上研究可以看出,Notch信号通路主要是参与GBM干细胞调控,同时可能影响血管生成促进GBM生长、侵袭。而最近报道有一种纳米生物共轭物被设计出来,其具备穿越血脑屏障的特点,可以阻断层粘连蛋白411的表达进而抑制层粘连蛋白411能够使Notch信号通路失活,对GBM生长有一定的抑制作用[62]。
5其他通路
除了上述通路外,还有许多信号通路在GBM中被发现处于异常失调,如调控GBM干细胞增殖分化的SHH(sonic hedgehog)/脑胶质瘤相关基因1(GLI1)信号通路以及酪氨酸激酶(JAK)-转录激活因子3(STAT3)信号通路[63,64];刺激GBM的血管生成的apelin/apelin受體信号通路,c-MYC信号通路以及HIF-1α信号通路[65-67];介导GBM化学抗性的miR-26a/AP-2α/Nanog信号传导轴、透明质酸酶(HA)-CD44信号通路以及Wnt/β-catenin信号通路[68-70];促进GBM进展和侵袭以及上皮-间质转化的miR-7-5p/三叶因子3(TFF3)信号通路、转化生长因子β1(TGF-β1)/Smad信号通路以及ras同源家族成员A(RhoA)和Rac家族小GTPase 1(Rac1)的信号通路[71-73]。除此之外,值得注意的是黏着斑(focal adhesion)途径,它参与细胞形状、黏附以及运动,与恶性肿瘤的侵袭扩散密切相关[74]。在GBM中,黏着斑激酶(FAK)为高表达[75],研究发现[76,77],FAK是上述RAS/MAPK信号通路和PI3K/AKT信号通路的上游调控因子,提示其是靶向黏着斑信号途径的关键分子,即能同时作用RAS/MAPK信号通路以及PI3K/AKT信号通路,这说明设计直接靶向FAK的药物可能会取得相比单独作用RAS/MAPK信号通路或者PI3K/AKT信号通路的药物更好的疗效。
6总结
GBM是成人中恶性程度最高的中枢神经系统肿瘤之一,即使采用最全面的治疗方法,包括外科手术切除、放疗和化疗,也会导致严重的不良预后,尽管近年来新药物和新治疗手段为GBM的治疗带来了希望,如免疫治疗、电场治疗等,但其总体预后仍然较差。由于关于调控细胞生长、分化以及影响细胞代谢的一系列信号通路在GBM中发生了异常激活,因此从GBM相关信号通路中详尽探讨并研究出可行的治疗标靶是可行的也是很有必要的。目前已经有相关靶向抑制GBM异常激活的信号通路的药物开发和研究,如p53信号通路的MDM2抑制剂AMG232、针对PI3K/AKT信号通路抑制剂Buparlisib等。由此可见,在GBM异常失调的各种信号传导途径中,都有可能发展为药物靶点,未来研发的药物通过靶向GBM信号通路中的核心分子或者联合靶向多个关键信号通路可能会取得明显的治疗效果。
参考文献:
[1]Wen PY,Huse JT.2016 World Health Organization Classification of Central Nervous System Tumors[J].Continuum,2017,23(6):1531-1547.
[2]Patel NP,Lyon KA,Huang JH.The effect of race on the prognosis of the glioblastoma patient:a brief review[J].Neurological research,2019,41(11):967-971.
[3]Alexander BM,Cloughesy TF.Adult Glioblastoma[J].Journal of clinical oncology:official journal of the American Society of Clinical Oncology,2017,35(21):2402-2409. [4]Alifieris C,Trafalis DT.Glioblastoma multiforme:Pathogenesis and treatment[J].Pharmacology&Therapeutics,2015(152):63-82.
[5]Franceschi E,Minichillo S,Brandes AA.Pharmacotherapy of Glioblastoma:Established Treatments and Emerging Concepts[J].CNS Drugs,2017,31(8):675-684.
[6]Geletneky K,Hajda J,Angelova AL,et al.Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial[J].Mol Ther,2017,25(12):2620-2634.
[7]Liau LM,Ashkan K,Tran DD,et al.Correction to: First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma[J].J Transl Med,2018,29,16(1):179.
[8]Levine AJ.p53,the cellular gatekeeper for growth and division[J].Cell,1997,88(3):323-331.
[9]Karimian A,Ahmadi Y,Yousefi B.Multiple functions of p21 in cell cycle,apoptosis and transcriptional regulation after DNA damage[J].DNA Repair(Amst),2016(42):63-71.
[10]Han N,Yuan F,Xian P,et al.GADD45a Mediated Cell Cycle Inhibition Is Regulated By P53 In Bladder Cancer[J].Onco Targets Ther,2019(12):7591-7599.
[11]Ohki R,Nemoto J,Murasawa H,et al.Reprimo,a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase[J].J Biol Chem,2000,275(30):22627-22630.
[12]Chen J.The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression[J].Cold Spring Harb Perspect Med,2016,6(3):a26104.
[13]Amelio I,Melino G.The p53 family and the hypoxia-inducible factors(HIFs):determinants of cancer progression[J].Trends Biochem Sci,2015,40(8):425-434.
[14]Zhan R,Xu K,Pan J,et al.Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis[J].Biochem Biophys Res Commun,2017, 490(3):700-706.
[15]Biasoli D,Sobrinho MF,Da FA,et al.Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy[J].Oncogenesis,2014,3(10):e123.
[16]Park CM,Park MJ,Kwak HJ,et al.Induction of p53-mediated apoptosis and recovery of chemosensitivity through p53 transduction in human glioblastoma cells by cisplatin[J].Int J Oncol,2006,28(1):119-125.
[17]Voce DJ,Bernal GM,Wu L,et al.Temozolomide Treatment Induces lncRNA MALAT1 in an NF-kappaB and p53 Codependent Manner in Glioblastoma[J].Cancer Research,2019,79(10):2536-2548.
[18]Zhang Y,Dube C,Gibert MJ,et al.The p53 Pathway in Glioblastoma[J].Cancers(Basel),2018,10(9):297. [19]Lin Y,Liao K,Miao Y,et al.Role of asparagine endopeptidase in mediating wild-type p53 inactivation of glioblastoma[J].J Natl Cancer Inst,2019.
[20]Brook L,Palade P,Maatough A,et al.Hairless regulates p53 target genes to exert tumor suppressive functions in glioblastoma[J].Journal of cellular biochemistry,2019,120(1):533-543.
[21]Zhu H,Wang H,Huang Q,et al.Transcriptional Repression of p53 by PAX3 Contributes to Gliomagenesis and Differentiation of Glioma Stem Cells[J].Frontiers in molecular neuroscience,2018(11):187.
[22]Xu D,Liu A,Wang X,et al.Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells[J].Cell Death&Disease,2018,9(5):514.
[23]Zhao WH,Wu SQ,Zhang YD.Downregulation of miR-124 promotes the growth and invasiveness of glioblastoma cells involving upregulation of PPP1R13L[J].Int J Mol Med,2013,32(1):101-107.
[24]Wu N,Lin X,Zhao X,et al.MiR-125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK-independent pathways[J].Br J Cancer,2013,109(11):2853-2863.
[25]Chen Y,Hu X,Li Y,et al.Ars2 promotes cell proliferation and tumorigenicity in glioblastoma through regulating miR-6798-3p[J].Sci Rep,2018,8(1):15602.
[26]Zhao H,Peng R,Liu Q,et al.The lncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP[J].Arch Biochem Biophys,2016(610):1-7.
[27]He Z,Wang Y,Huang G,et al.The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP[J].Arch Biochem Biophys,2017(623-624):1-8.
[28]Canon J,Osgood T,Olson SH,et al.The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents[J].Mol Cancer Ther,2015,14(3):649-658.
[29]Gluck WL,Gounder MM,Frank R,et al.Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53wild-type solid tumors or multiple myeloma[J].Investigational New Drugs,2019:1-13.
[30]Chen C,Nelson LJ,Avila MA,et al.Mitogen-Activated Protein Kinases(MAPKs)and Cholangiocarcinoma:The Missing Link[J].Cells,2019,8(10):E1172.
[31]Johnson GL,Lapadat R.Mitogen-activated protein kinase pathways mediated by ERK,JNK,and p38 protein kinases[J].Science,2002,298(5600):1911-1912.
[32]Liu Z,Wang F,Zhou Z,et al.Alisertib induces G2/M arrest,apoptosis,and autophagy via PI3K/Akt/mTOR- andp38 MAPK-mediated pathways in human glioblastoma cells[J].American Journal of Translational Research,2017,9(3):845-873. [33]Wang R,Deng D,Shao N,et al.Evodiamine activates cellular apoptosis through suppressing PI3K/AKT and activating MAPK in glioma[J].Onco Targets Ther,2018(11):1183-1192.
[34]Vitucci M,Karpinich NO,Bash RE,et al.Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis[J].Neuro Oncol,2013,15(10):1317-1329.
[35]Ngo MT,Harley B.Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel[J].Biomaterials,2019(198):122-134.
[36]Yang P,Kang W,Pan Y,et al.Overexpression of HOXC6 promotes cell proliferation and migration via MAPK signaling and predicts a poor prognosis in glioblastoma[J].Cancer Manag Res,2019(11):8167-8179.
[37]Mu N,Gu J,Liu N,et al.PRL-3 is a potential glioblastoma prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the ERK and JNK pathways[J].Theranostics,2018,8(6):1527-1539.
[38]Li Q,Miao Z,Wang R,et al.Hesperetin Induces Apoptosis in Human Glioblastoma Cells via p38 MAPK Activation[J].Nutr Cancer,2019:1-8.
[39]Jean S,Kiger AA.Classes of phosphoinositide 3-kinases at a glance[J].J Cell Sci,2014,127(Pt 5):923-928.
[40]Revathidevi S,Munirajan AK.Akt in cancer:Mediator and more[J].Semin Cancer Biol,2019.
[41]Borrie S C,Brems H,Legius E,et al.Cognitive Dysfunctions in Intellectual Disabilities:The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways[J].Annu Rev Genomics Hum Genet,2017(18):115-142.
[42]Zhang ZZ,Qin XH,Zhang J.MicroRNA-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating BTG1-mediated PI3K/Akt/VEGF signaling pathway[J].Am J Physiol Endocrinol Metab,2019,316(6):E1050-E1060.
[43]Seo YS,Kang OH,Kong R,et al.Polygalacin D induces apoptosis and cell cycle arrest via the PI3K/Akt pathway in non-small cell lung cancer[J].Oncol Rep,2018,39(4):1702-1710.
[44]Chen YR,Liu MT,Chang YT,et al.Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells[J].J Virol,2008,82(16):8124-8137.
[45]Zheng Q,Diao S,Wang Q,et al.IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signaling pathway[J].J Cell Mol Med,2019,23(1):357-369.
[46]Zhong C,Chen Y,Tao B,et al.LIM and SH3 protein 1 regulates cell growth and chemosensitivity of human glioblastoma via the PI3K/AKT pathway[J].BMC Cancer,2018,18(1):722. [47]Zhang J,Zhang J,Qiu W,et al.MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma[J].J Neurooncol,2018,139(3):547-562.
[48]Zhang G,Chen L,Khan AA,et al.miRNA-124-3p/neuropilin-1(NRP-1)axis plays an important role in mediating glioblastoma growth and angiogenesis[J].Int J Cancer,2018,143(3):635-644.
[49]Chang JH,Hwang YH,Lee DJ,et al.MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells[J].Int J Radiat Oncol Biol Phys,2016,94(2):412-420.
[50]Lv D,Jia F,Hou Y,et al.Histone Acetyltransferase KAT6A Upregulates PI3K/AKT Signaling through TRIM24 Binding[J].Cancer Res,2017,77(22):6190-6201.
[51]Ando Y,Inada-Inoue M,Mitsuma A,et al.Phase I dose-escalation study of buparlisib(BKM120),an oral pan-class I PI3K inhibitor,in Japanese patients with advanced solid tumors[J].Cancer Sci,2014,105(3):347-353.
[52]Siebel C,Lendahl U.Notch Signaling in Development,Tissue Homeostasis,and Disease[J].Physiol Rev,2017,97(4):1235-1294.
[53]Nowell CS,Radtke F.Notch as a tumour suppressor[J].Nat Rev Cancer,2017,17(3):145-159.
[54]Espinoza I,Miele L.Notch inhibitors for cancer treatment[J].Pharmacology&Therapeutics,2013,139(2):95-110.
[55]Aster JC,Pear WS,Blacklow SC.The Varied Roles of Notch in Cancer[J].Annu Rev Pathol,2017(12):245-275.
[56]El Hindy N,Keyvani K,Pagenstecher A,et al.Implications of Dll4-Notch signaling activation in primary glioblastomamultiforme[J].Neuro Oncol,2013,15(10):1366-1378.
[57]Cenciarelli C,Marei HE,Zonfrillo M,et al.The interference of Notch1 target Hes1 affects cell growth,differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets[J].Oncotarget,2017,8(11):17873-17886.
[58]Huang SX,Zhao ZY,Weng GH,et al.Upregulation of miR-181a suppresses the formation of glioblastoma stem cells by targeting the Notch2 oncogene and correlates with good prognosis in patients with glioblastoma multiforme[J].Biochem Biophys Res Commun,2017,486(4):1129-1136.
[59]Deng J,Liu AD,Hou GQ,et al.N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling[J].J Exp Clin Cancer Res,2019,38(1):2.
[60]Ulasov IV,Mijanovic O,Savchuk S,et al.TMZ regulates GBM stemness via MMP14-DLL4-Notch3 pathway[J].Int J Cancer,2019.
[61]El HN,Keyvani K,Pagenstecher A,et al.Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme[J].Neuro Oncol,2013,15(10):1366-1378. [62]Sun T,Patil R,Galstyan A,et al.Blockade of a Laminin-411-Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma Growth through Tumor-Microenvironment Cross-talk[J].Cancer Res,2019,79(6):1239-1251.
[63]Han B,Wang R,Chen Y,et al.QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway[J].Cell Oncol(Dordr),2019.
[64]Fan Y,Xue W,Schachner M,et al.Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells Via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor[J].Cancers(Basel),2018,11(1):22.
[65]Mastrella G,Hou M,Li M,et al.Targeting APLN/APLNR Improves Antiangiogenic Efficiency and Blunts Proinvasive Side Effects of VEGFA/VEGFR2 Blockade in Glioblastoma[J].Cancer Res,2019,79(9):2298-2313.
[66]Maugeri G,D'Amico AG,Rasa DM,et al.Caffeine Effect on HIFs/VEGF Pathway in Human Glioblastoma Cells Exposed to Hypoxia[J].Anticancer Agents Med Chem,2018,18(10):1432-1439.
[67]Wang T,Chen W,Wu J.H2-P,a honokiol derivative,exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma[J].J Cell Biochem,2018,119(4):3142-3148.
[68]Huang W,Zhong Z,Luo C,et al.The miR-26a/AP-2alpha/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma[J].Theranostics,2019,9(19):5497-5516.
[69]Luo W,Yan D,Song Z,et al.miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/beta-catenin signaling via targeting SOX2[J].Life Sci,2019(226):98-106.
[70]Hartheimer JS,Park S,Rao SS,et al.Targeting Hyaluronan Interactions for Glioblastoma Stem Cell Therapy[J].Cancer Microenviron,2019,12(1):47-56.
[71]Jiang Y,Zhou J,Hou D,et al.Prosaposin is a biomarker of mesenchymal glioblastoma and regulates mesenchymal transition through the TGF-beta1/Smad signaling pathway[J].J Pathol,2019,249(1):26-38.
[72]Ma H,Li T,Tao Z,et al.NKCC1 promotes EMT-like process in GBM via RhoA and Rac1 signaling pathways[J].J Cell Physiol,2019,234(2):1630-1642.
[73]Shukla A,Gupta P,Singh R,et al.Glycolytic inhibitor 2-Deoxy-d-Glucose activates migration and invasion in glioblastoma cells through modulation of the miR-7-5p/TFF3 signaling pathway[J].Biochem Biophys Res Commun,2018,499(4):829-835.
[74]Paluch EK,Aspalter IM,Sixt M.Focal Adhesion-Independent Cell Migration[J].Annu Rev Cell Dev Biol,2016,32(1):469-490.
[75]Natarajan M,Hecker TP,Gladson CL.FAK signaling in anaplastic astrocytoma and glioblastoma tumors[J].Cancer J,2003,9(2):126-133.
[76]Chen HH,Chen CW,Chang YY,et al.Preliminary crystallographic characterization of the Grb2 SH2 domain in complex with a FAK-derived phosphotyrosyl peptide[J].Acta Crystallogr Sect F Struct Biol Cryst Commun,2010,66(Pt 2):195-197.
[77]Liu BY,He XY,Xu C,et al.Peptide and Aptamer Decorated Delivery System for Targeting Delivery of Cas9/sgRNA Plasmid To Mediate Antitumor Genome Editing[J].ACS Appl Mater Interfaces,2019,11(27):23870-23879.
收稿日期:2019-10-31;修回日期:2019-11-9
編辑/杜帆
转载注明来源:https://www.xzbu.com/1/view-15083867.htm