您好, 访客   登录/注册

炎症诱导嗅鞘胶质细胞应激功能障碍的研究进展

来源:用户上传      作者:

   【摘要】 神经损伤在临床上很常见,外科技术的发展已经在很大程度上提高了修复的质量,但修复的效果仍然不理想。嗅鞘胶质细胞是极少数的中枢神经系统可以再生的细胞之一,具有很强的促进神经修复再生和神经髓鞘化的能力,它的发现为神经系统再生医学领域带来了新的希望。然而,炎症应激下,嗅鞘胶质细胞的活性降低或发生死亡,明确嗅鞘胶质细胞在炎症条件下细胞死亡的具体病理分子过程非常重要。本文对近年来的最新研究进展进行综述,并且对存在的问题提出讨论和假设。
   【关键词】 嗅鞘胶质细胞; 炎症应激; 神经损伤; 修复; 病理机制
   doi:10.14033/j.cnki.cfmr.2019.19.082 文献标识码 A 文章编号 1674-6805(2019)19-0-04
   Advances in Research on Stress Dysfunction of Olfactory Ensheathing Glia Induced by Inflammation/HE Maowei,DUAN Yanting,ZHANG Yawei,et al.//Chinese and Foreign Medical Research,2019,17(19):-185
   【Abstract】 Nerve damage is very common in the clinic.The development of surgical techniques has greatly improved the quality of repair,but the effect of repair is still not ideal.Olfactory ensheath glial cells are one of the few cells that can be regenerated by the central nervous system.They have strong ability to promote nerve repair regeneration and neuro myelination.Its findings have brought new hope to the field of neurological regenerative medicine.However,under inflammatory stress,the activity of olfactory ensheathing glial cells is reduced or killed,and it is important to understand the specific pathological molecular processes of olfactory ensheathing glial cells under inflammatory conditions.This paper reviews the latest research progress in recent years and discusses and hypotheses the existing problems.
   【Key words】 Olfactory ensheathing glial cells; Inflammatory stress; Nerve injury; Repair; Pathological mechanism
   First-author’s address:Bengbu Medical College,Affiliated Fuzhou General Hospital,Fuzhou 350025,China.
   嗅鞘神經胶质细胞(olfactory ensheathing glia,OEG)是一种巨胶质胞亚型,位于神经系统中。嗅鞘胶质细胞的发育起源于鞘内神经胶质,分布在嗅上皮内,嗅觉神经和嗅球的前两层,这些细胞在形态学,免疫细胞化学和功能特性与其他神经胶质细胞不同,OEG在一生中均会产生神经营养因子和介导神经元的因子保持神经活性和轴突的延伸。此外,他们能够迁移至受损伤的神经处,修复再生神经。OEG的主要作用是分泌大量神经生长因子促进神经生长[1]。嗅鞘细胞是目前所发现的极少数的中枢神经系统可以再生细胞之一。因此,OEG可能在未来被用作治疗中枢神经系统(CNS)创伤的治疗细胞之一。OEG最明显的特点是具有终身再生能力,并且能够释放多种神经营养因子、神经保护分子,是促进神经髓鞘化最强的细胞。OEG的再生特性是它创造了一个微环境有利于轴突生长和恢复,例如吞噬细胞碎片和/或细菌、调节神经炎症、提供神经保护、促进血管生成、表达神经营养因子,以及分泌细胞外基质(ECM)分子,提供基质对于新生成的轴突非常重要。神经营养因子促进神经元的生长和存活,OEG表达神经生长因子(NGF)、脑源性神经营养因子(BDNF)、神经营养因子3(NT-3)、神经营养因子4/5(NT-4/5)、神经调节蛋白(NRG)、睫状神经营养因子(CNTF),神经营养因子(NTN)和胶质细胞衍生生长因子(GDNF),其表达可归因于炎症和损伤。近年来逐渐应用于治疗周围神经损伤、脊髓损伤。嗅鞘细胞与神经胶质细胞、许旺细胞在表现型上有共同点,它们都能够促进轴突的再生,主要区别在于嗅鞘细胞不但存在于中枢神经系统,也存在于外周神经中。嗅黏膜中的神经元是唯一生后才生长并在成年时继续分化的神经元,寿命为4~12周,随着新细胞的生长,又建立了新的神经支配关系。嗅鞘细胞存在于嗅神经及嗅球的神经层上,沿着嗅神经的全长,从周围神经系统到中枢神经分布。通过将培养的OEG移植到受损伤的神经系统中,OEG参与了终身神经再生。例如,OEG移植可以减轻脊髓损伤[2],脊髓损伤的动物研究表明,OEG可以存活和生存,并且远距离移植到损伤部位,减少瘢痕组织和空腔形成,恢复呼吸和攀爬功能并改善后肢活动度。OEG进入瘢痕组织的迁移特性归因于它们的快速移动,减轻周围神经损伤,减轻局灶性脑缺血[3-4]。嗅鞘神经胶质细胞(OEG)在神经系统再生医学领域有着广泛的应用。   1 炎症条件OEG的应激及线粒体对细胞凋亡的影响
  1.1 OEG修复作用
   在分子水平上,OEG表达多种胞外基质蛋白,包括但不限于层粘连蛋白、纤连蛋白、神经/胶质抗原2(NG2)和galectin-1。这些细胞外基质蛋白在神经发生和再生扮演关键角色[5-7]。此外,重伤之后,如嗅球切除,OEG增殖和迁移到受损的组织器官修复然后产生保护性细胞因子[8-9]。此外,OEG激活免疫反应[10],减轻氧化应激[11],提高神经元碎片化的间隙[12],并促进神经元存活[13]。这一信息强调了基于OEG的再生医学正在成为治疗外周/中枢神经系统损伤的一种很有前途的方法[14]。
  1.2 炎症对OEG的影响
   然而,由于慢性炎症反应,OEG存活率随着年龄的增长而降低,这在帕金森病和其他神经退行性疾病中尤为明显[15]。其病理学机制是由于慢性炎症反应导致的OEG的生存能力随着年龄的增长而逐渐下降。因此,了解炎症应激诱导OEG功能障碍的分子机制可能为基于OEG的再生医学急需的新的治疗方式铺平道路。
  1.3 炎症诱导神经损伤的作用机制
   越来越多的证据表明慢性炎症在帕金森病中发生的进行性多巴胺能神经变性中起作用[16]。炎症通过氧化应激和线粒体功能障碍的恶性循环的恶化来介导神经元损伤。细菌内毒素,脂多糖(LPS),诱导小胶质细胞激活和炎症驱动的多巴胺能神经变性。为了检验LPS诱导的炎症反应可能损害线粒体结构和功能导致黑质多巴胺能神经元丢失,将LPS或盐水注射到大鼠的纹状体中。发现纹状体内LPS诱导线粒体呼吸缺陷,线粒体嵴损伤,线粒体氧化,黑质中的多巴胺能神经元显着减少。该研究表明LPS诱导的多巴胺能神经变性可能通过线粒体损伤发挥作用。
   值得注意的是,以往的研究都使用脂多糖(lipopolysaccharide,
  LPS)诱导神经炎症模型并观察神经损伤。例如,LPS被用来探讨慢性炎症是否与帕金森疾病中渐进性多巴胺能神经变性有关[17]。LPS介导的神经毒性与脑多巴胺能神经功能障碍有密切关联。LPS给药已被用于诱导神经变性如阿尔茨海默病的体内模型[18]。因此采用LPS诱导炎症反应模型观察OGE细胞凋亡的损伤机制是一种趋势。
  1.4 线粒体在细胞死亡中的作用
   线粒体是人体所有细胞中存在的细胞器(红细胞除外),在其中发挥着关键作用。线粒体除了提供能量,线粒体还参与其他复杂过程,如细胞代谢,活性氧的产生,钙调节,细胞增殖,细胞分裂和程序性细胞死亡(细胞凋亡)等。一些研究表明炎症诱导内皮细胞凋亡通过激活含半胱氨酸的天冬氨酸水解酶9
  (caspase9)依赖的线粒体凋亡途径。此外,最近的研究发现线粒体动力学(裂变和融合)维持着线粒体稳态。过度线粒体裂变是线粒体细胞凋亡的早期阶段。过多的线粒体裂变促进了促凋亡蛋白的渗漏[如细胞色素c(cyt-c)]进入细胞质引发线粒体相关的细胞凋亡。这些数据表明,线粒体分裂是内皮细胞存活和静脉内稳态的潜在靶点。一些研究表明线粒体裂变与细胞钙浓度密切相关,因为裂变是一种自收缩过程。
   细胞活力和功能是由线粒体高度调控的,线粒体对内环境稳态失衡,尤其是炎症损伤,会表现出多种应激反应,包括氧化应激反应、炎症反应和神经系统的缺血反应[19-20]。线粒体影响细胞生存和死亡的一般机制有三:(1)ATP耗尽[21];(2)介导细胞氧化应激[22];(3)释放促凋亡因子,启动含半胱氨酸的天冬氨酸水解酶(cysteinyl laspartate specific proteinase,Caspase)依賴的死亡途径[23-24]。例如,线粒体诱发的氧化应激,促进了炎症损伤中的内皮细胞凋亡[25]。线粒体异常分裂,通过加速肝细胞死亡,参与脂肪肝疾病的发展和进展[21-26]。在分子水平上,线粒体裂变是由线粒体裂变蛋白(Drp1)从细胞质转位到线粒体表面上与线粒体结合,Drp1将在线粒体周围形成“环”结构,并在GTP的帮助下迫使线粒体分裂成几个子线粒体。值得注意的是,Drp1与线粒体的相互作用被线粒体裂变因子(Mff)微调Drp1的线粒体外膜受体。糖尿病肾病的发病机制也与线粒体过度分裂有关[27]。在炎症相关的神经退行性疾病中,线粒体分裂被激活并导致线粒体氧化应激。此外,IL-1β介导的神经退化,本质上是由于线粒体氧化应激和线粒体去极化所引起的[28]。此外,炎症诱导的抑郁样行为也与线粒体异常有关[29]。这些数都据强调了线粒体在维持神经元活力方面的关键作用。但目前还没有研究探讨炎症损伤中OEG线粒体稳态的改变。
  1.5 线粒体介导细胞死亡的机制研究
   此外,线粒体介导的细胞损伤或死亡主要依赖于线粒体外膜的高渗透性[30]。线粒体膜渗透促进线粒体促凋亡因子[包括cyt-c、细胞凋亡调节蛋白(Smac)和细胞凋亡调节蛋白(HtrA2/Omi)]从线粒体释放到细胞质或细胞核中,这些促凋亡因子,最终激活caspase-9参与的线粒体死亡通路[31]。值得注意的是,线粒体外膜的通透性主要由Bcl-2相关X蛋白(Bcl-2 associated X protein)及其激活因子Bnip3(Bcl-2/adenovirus E1B 19KD- interacting protein3)控制。Bax的增加和Bcl-2的减少,通通促进了线粒体外膜的高渗透性,而过于通透的线粒体外膜,可能进一步诱导线粒体渗透性过渡孔(mPTP)的打开。mPTP开放时间和开放程度的增加,也辅助性的激活了线粒体依赖的死亡信号通路[32]。因此,Bax激活和线粒体促凋亡因子泄漏(尤其是HtrA2/Omi)被认为是线粒体相关细胞死亡的两个关键上游分子事件。在创伤性脑损伤中,Bnip3激活被认为是神经元凋亡的发病机制[33]。同样,在锰诱导的神经毒性和缺血性中风中,Bnip3上调会加重线粒体功能障碍[34]和神经元死亡[35]。但需要注意的是,炎症是否通过Bax依赖性线粒体凋亡介导OEG损伤尚不完全清楚。以往的研究均使用LPS诱导神经炎症[36],发现LPS可导致轴突[37]、小胶质细胞[38]和螺旋神经节神经元[39]线粒体损伤。   2 炎癥诱导OEG损伤的可能机制
   目前的研究尚不能明确炎症导致OEG损伤的具体病理机制,但是明确这些病理分子过程会为OEG抵抗慢性炎症应激提供一个潜在的治疗靶点,为神经损伤的修复提供新的思路。基于这些报道,笔者提出并分析了以下3个假设:(1)Lps诱导的炎症是否引起OEG细胞凋亡;(2)Lps介导的OEG死亡是否需要线粒体功能障碍;(3)LPS是否通过JNK-Bnip3-Bax信号通路调节OEG活力和线粒体稳态。
  参考文献
  [1] Ramón-Cueto A,Avila J.Olfactory ensheathing glia:properties and function[J].Brain Research Bulletin,1998,46(3):175-187.
  [2] Yao R,Murtaza M,Velasquez J T,et al.Olfactory Ensheathing Cells for Spinal Cord Injury:Sniffing Out the Issues[J].Cell Transplantation,2018,27(6):879-889.
  [3] Matthew B,James J,Mary C,et al.The Glia Response after Peripheral Nerve Injury:A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies[J].International Journal of Molecular Sciences,2017,18(2):287.
  [4] Augestad I L,Nyman A K G,Costa A I,et al.Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat[J].Neurochemical Research,2017,42(6):1599-1609.
  [5] O’Neill P,Lindsay S L,Pantiru A,et al.Sulfatase-Mediated Manipulation of the Astrocyte-Schwann Cell Interface[J].Glia,2016,65(1):19-33.
  [6] Cao L,Mu L,Qiu Y,et al.Diffusible,membrane-bound,and extracellular matrix factors from olfactory ensheathing cells have different effects on the self-renewing and differentiating properties of neural stem cells[J].Brain Research,2010,1359:56-66.
  [7] Tan A M,Zhang W,Levine J M.NG2:a component of the glial scar that inhibits axon growth[J].Journal of Anatomy,2005,207(6):717-725.
  [8] Chehrehasa F,Ekberg J A K,St John J A.A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation[J].Neuroscience Letters,2014,563:90-95.
  [9] Nan B,Getchell M L,Partin J V,et al.Leukemia inhibitory factor,interleukin-6,and their receptors are expressed transiently in the olfactory mucosa after target ablation[J].Journal of Comparative Neurology,2001,435(1):60-77.
  [10] Lane A P,Turner J,May L,et al.A Genetic Model of Chronic Rhinosinusitis-Associated Olfactory Inflammation Reveals Reversible Functional Impairment and Dramatic Neuroepithelial Reorganization[J].Journal of Neuroscience,2010,30(6):2324-2329.
  [11] Jinbo L,Zhiyuan L,Zhijian Z,et al.Olfactory Ensheathing Cell-Conditioned Medium Protects Astrocytes Exposed to Hydrogen Peroxide Stress[J].Cellular & Molecular Neurobiology,2013,33(5):699-705.   [12] Li Y,Zou T,Xue L,et al.TGF-β1 enhances phagocytic removal of neuron debris and neuronal survival by olfactory ensheathing cells,via,integrin/MFG-E8 signaling pathway[J].Molecular and Cellular Neuroscience,2017,85:45-56.
  [13] Wright A A,Todorovic M,Tello-Velasquez J,et al.Enhancing the Therapeutic Potential of Olfactory Ensheathing Cells in Spinal Cord Repair Using Neurotrophins[J].Cell Transplantation,2018,27(6):867-878.
  [14] Liu Q,Qin Q,Sun H,et al.Neuroprotective effect of olfactory ensheathing cells co-transfected with Nurr1 and Ngn2 in both in vitro and in vivo models of Parkinson’s disease[J].Life Sciences,2018,194:168-176.
  [15] Lei Q,Tan J,Yi S,et al.Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFα-induced apoptosis via increased Bnip3-related mitophagy[J].Cellular & Molecular Biology Letters,2018,23(1):14.
  [16] Hunter R,Ojha U,Bhurtel S,et al.Lipopolysaccharide-induced functional and structural injury of the mitochondria in the nigrostriatal pathway[J].Neuroscience Research,2017,114:62-69.
  [17] Kaizaki A,Tien L T,Pang Y,et al.Celecoxib reduces brain dopaminergic neuronaldysfunction,and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide[J].Journal of Neuroinflammation,2013,10(1):1-14.
  [18] Noh H,Jeon J,Seo H.Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain[J].Neurochemistry International,2014,69:35-40.
  [19] Santuy A,Turégano-López M,Rodríguez J R,et al.A Quantitative Study on the Distribution of Mitochondria in the Neuropil of the Juvenile Rat Somatosensory Cortex[J].Cerebral Cortex,2018,28(10):3673-3684.
  [20] Jung-Hwa T C.Stimulation-induced structural changes at the nucleus,endoplasmic reticulum and mitochondria of hippocampal neurons[J].Molecular Brain,2018,11(1):44.
  [21] Ruibing L,Ting X,Dandan L,et al.Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease:The role of the ERK-CREB pathway and Bnip3-mediated mitophagy[J].Redox Biology,2018,18:229-243.
  [22] Zhou H,Wang S,Hu S,et al.ER–Mitochondria Microdomains in Cardiac Ischemia-Reperfusion Injury:A Fresh Perspective[J].Frontiers in Physiology,2018,9:755.
  [23] Hao Z,Jin W,Pingjun Z,et al.NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α[J].Basic Research in Cardiology,2018,113(4):23.   [24] Zhu P,Hu S,Jin Q,et al.Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury:A mechanism involving calcium overload/XO/ROS/mPTP pathway[J].Redox Biology,2018,16:157-168.
  [25] Cui J,Li Z,Zhuang S,et al.Melatonin alleviates inflammation-induced apoptosis in human umbilical vein endothelial cells via suppression of Ca2+-XO-ROS-Drp1-mitochondrial fission axis by activation of AMPK/SERCA2a pathway[J].Cell Stress Chaperones,2018,23(2):281-293.
  [26] Zhou H,Du W,Li Y,et al.Effects of melatonin on fatty liver disease:the role of NR4A1/DNA-PKcs/p53 pathway,mitochondrial fission and mitophagy[J].Journal of Pineal Research,2017,64(1):229-243.
  [27] Junqin Sheng,Hongyan Li,Qin Dai,et al.DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways[J].Journal of Cellular Physiology,2019,234(3):3043-3057.
  [28] Mcfarland A J,Davey A K,Mcdermott C M,et al.Differences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neurodegeneration[J].Toxicology & Applied Pharmacology,2018,344:56-73.
  [29] Chen W J,Du J K,Hu X,et al.Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior[J].Physiology & Behavior,2017,182:54-61.
  [30] Zhou H,Zhang Y,Hu S,et al.Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis[J].Journal of Pineal Research,2017,63:e12413.
  [31] Li H,He F,Zhao X,et al.YAP Inhibits the Apoptosis and Migration of Human Rectal Cancer Cells via Suppression of JNK-Drp1-Mitochondrial Fission-HtrA2/Omi Pathways[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2017,44(5):2073-2089.
  [32] Jing X,Yang J,Jiang L,et al.MicroRNA-29b Regulates the Mitochondria-Dependent Apoptotic Pathway by Targeting Bax in Doxorubicin Cardiotoxicity[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2018,48(2):692-704.
  [33] Cho B B.Caspase-independent programmed cell death following ischemic stroke[J].Journal of Investigative Surgery:the Official Journal of the Academy of Surgical Research,2008,21(3):141-147.
  [34] Prabhakaran K,Chapman G D.BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity[J].Neurotoxicology,2009,30(3):414-422.   [35] Zhao S T,Chen M,Li S J,et al.Mitochondrial BNIP3 upregulation precedes endonuclease G translocation in hippocampal neuronal death following oxygen-glucose deprivation[J].BMC Neuroscience,2009,10(1):113.
  [36] Rigillo G,Vilella A,Benatti C,et al.LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response[J].Brain,Behavior,and Immunity,2018,74:277-290.
  [37] Errea O,Moreno B,Gonzalez-Franquesa,et al.The disruption of mitochondrial axonal transport is an early event in neuroinflammation[J].Journal of Neuroinflammation,2015,12(1):152.
  [38] Ho D H,Je A R,Lee H,et al.LRRK2 Kinase Activity Induces Mitochondrial Fission in Microglia via Drp1 and Modulates Neuroinflammation[J].Experimental Neurobiology,2018,27(3):171-180.
  [39] Zuo W Q,Hu Y J,Yang Y,et al.Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model[J].Journal of Neuroinflammation,2015,12(1):105.
  (收稿日期:2019-05-05) (本文編辑:郎序莹)
转载注明来源:https://www.xzbu.com/6/view-15012469.htm