您好, 访客   登录/注册

安装液压互联悬架铰接车辆的稳定性研究

来源:用户上传      作者:

   摘   要:为了探究悬架性能和鞍座结构参数对铰接车辆操纵稳定性的影响,提出了一种在半挂车单轴悬架上应用的抗侧倾液压互联系统. 首先建立了半挂车单轴抗侧倾液压互联悬架频域模型并通过侧倾位移传递函数验證了该模型的有效性,同时依据复模态振动理论获得悬架的等效刚度和等效阻尼. 在此基础上,建立了包含鞍座特性的铰接车辆耦合液压互联悬架模型实现仿真模拟. 结果表明,鞍座刚度参数均不考虑时,该液压互联悬架系统只能单一地提升半挂车的侧倾稳定性;考虑鞍座侧倾刚度参数时,该系统下的牵引车和半挂车的侧倾、横摆稳定性以及整车的协调稳定性均得到提升,且增大鞍座横摆刚度和减小鞍座牵引点至半挂车距离,提升效果愈显著. 所得结果为安装液压互联悬架铰接车辆的优化设计提供理论依据.
   关键词:液压互联悬架(HIS);铰接车辆;鞍座特性;操纵稳定性;优化设计
   中图分类号:U469.5                              文献标志码:A
   Abstract:In order to explore the influence of suspension performance and saddle structure parameters on the handling stability of articulated vehicles,an anti-roll hydraulically interconnected system was proposed for single-axle semi-trailer suspension. Firstly,the frequency domain model of single-axle hydraulically interconnected suspension was established and verified by the roll displacement transfer function. At the same time,effective stiffness and damping were obtained according to the theory of complex mode vibration. On this basis,an articulated vehicle coupling Hydraulically Interconnected Suspension(HIS) model with saddle characteristics was presented to conduct the simulation. The results show that the hydraulically interconnected suspension system can only enhance the roll stability of the semi-trailer when the saddle stiffness parameters are not taken into account. When the roll stiffness parameters of the saddle are considered,the roll stability,yaw stability and coordination stability of the tractor and semi-trailer under the HIS system are improved,and the improvement effect is more significant when the yaw stiffness of the saddle is increased or the distance between the saddle and mass center of the semi-trailer is reduced. The results provide a theoretical basis for the design optimization of the articulated vehicle fitted with hydraulically interconnected suspension.
   Key words:Hydraulically Interconnected Suspension(HIS);articulated vehicle;saddle characteristics;handling stability;design optimization
  相对于单体货物运输车辆而言,铰接式牵引-半挂车具有质心高、承载重量大及鞍座参数复杂的特点,使得其在高速变道工况下行驶极容易发生折叠、侧翻的车身失稳现象[1]. 近十年来用于提高车辆稳定性的液压互联悬架(HIS)先后在越野车上和乘用车上被国内外学者[2-4]深度研究. 文献[5]中采用非线性有限元方法,实现了耦合的机械液压互联悬架系统的频域模型推导.文献[6]的研究表明,配备HIS系统的SUV操纵性能与原车相比有了显著提高,其系统提供的可变刚度和阻尼有利于为车辆提供侧翻阻力. 周敏等[7]设计液压互联悬架取代传统横向稳定杆的越野样车. 随之,郭耀华等[8]针对某客车开发了替代原车减振器和横向稳定杆的安装HIS样车,实车试验证明该系统不降低平顺性的同时,能显著提高操纵稳定性能. 章杰等[9]对矿山车辆的板簧悬架进行HIS的样车装配,坑道制动测试表明HIS可有效改善矿山车辆的舒适性和抗俯仰能力. 丁飞等[10-11]针对三轴直列卡车得出了HIS对提供的附加扭转刚度和阻尼受到液压元件参数约束的结论. 此外,HIS对雷克萨斯470、200系列丰田陆地巡洋舰等[12]车型的市场反应良好. 从上述成果看出,关于HIS研究内容目前主要集中在越野车、乘用车、客车和三轴重型车的侧倾、垂向、俯仰、扭转运动方面的性能,但基本未涉及在包含鞍座的铰接车辆领域的应用研究.    因此,本文针对当前HIS性能在铰接车辆方面研究较少的缺陷,考虑铰接车辆的复杂性和实际经费的要求,提出辅助铰接车辆半挂车体悬架的抗侧倾液压互联系统. 通过传递矩阵方法建立了抗侧倾液压互联悬架的频域模型,并用侧倾位移传递函数验证所建模型的正确性,同时根据复模态振动理论获得频域方程的等效侧倾刚度和阻尼,并以此为基础,建立了包含鞍座参数和耦合HIS的三轴铰接车辆动力学模型,在典型高速双移线下仿真验证了HIS能够提高铰接车辆的操纵稳定性,并通过改变鞍座的侧倾、横摆刚度和距离半挂车质心的位置参数进一步优化HIS铰接车辆的车身稳定性,补充了HIS在铰接车辆领域的理论研究.
  1   建立半挂车的半车侧倾模型
  1.1   机械悬架系统建模
   安装抗侧倾液压互联悬架的半挂车侧倾模型如图1所示,其中Om为悬架的侧倾中心,O2为半挂车的质心.
   结   论
   本文以三轴铰接车辆的半挂车单体悬架为基础,通过流体系统传递阻抗法获得与液压互联系统耦合的半车频域模型,运用模态理论法求解该微分方程侧倾模态的固有频率;进一步将固有频率转化为悬架的等效侧倾刚度和阻尼,运用拉格朗日方程推导出三轴耦合HIS系统的牵引-半挂车动力学模型,在MATLAB程序中仿真双移线工况获得车辆侧倾角、横摆角和铰接角的响应.
   1)当鞍座的侧倾刚度和横摆刚度均为0时,抗侧倾液压互联悬架只能单一地提高半挂车的侧倾稳定性;
   2)当鞍座的侧倾刚度不为0时,抗侧倾液压互联悬架能同时提高牵引车和半挂车的侧倾和横摆稳定性,并同时显著提高整车的协调稳定性.
   3)传统铰接车辆在鞍座侧倾刚度不为0和配置HIS系统后,变大鞍座横摆刚度和减小鞍座牵引点至半挂车质心距离能进一步提升装配HIS之后的整车操纵稳定性.
  参考文献
  [1]    YAO Z. Dynamic simulation for the rollover stability performances of articulated vehicles[J]. Journal of Automobile Engineering,2014,228(7):771—783.
  [2]    ZHANG N,SMITH W A,JEYAKUMARAN J. Hydraulically interconnected vehicle suspension:background and modeling [J]. Vehicle System Dynamics,2010,48(1):17—40.
  [3]    周兵,黄晓婷,耿元. 基于 Morris 法分析的液压参数对互联悬架的影响[J]. 湖南大学学报(自然科学版),2016,43(2):70—76.
  ZHOU B,HUANG X T,GENG Y. Influence of hydraulic parameters on hydraulically interconnected suspension based on Morris[J]. Journal of Hunan University(Natural Sciences),2016,43(2):70—76. (In Chinese)
  [4]    WANG L F,ZHANG N,DU H P. Experimental investigation of a hydraulically interconnected suspension in vehicle dynamics and stability control[J]. SAE International Journal of Passenger Cars-Mechanical Systems,2012,5(2):759—768.
  [5]    WILDE J R. Experimental evaluation and ADAMS simulation of the Kinetic suspension system[D]. Ohio:College of Mechanical Engineering,Ohio State University,2005:128—159.
  [6]    SMITH W A,ZHANG N,HU W. Hydraulically interconnected vehicle suspension:handling performance[J]. Vehicle System Dynamics,2011,49(1/2):87—106.
  [7]    周敏,章杰,鄭敏毅,等. 装有液压互联悬架车辆的越野性能仿真与试验研究[J]. 汽车工程,2017,39(4):447—456.
  ZHOU M,ZHANG J,ZHENG M Y,et al. Simulation and experimental study on the off-road performance of vehicle with hydraulically interconnected  suspension [J]. Automobile Engineering,2017,39(4):447—456. (In Chinese)
  [8]    郭耀华. 某客车液压互联悬架刚度参数设计研究[J]. 军民两用技术与产品,2016(18):71—73.   GUO Y H. Design and research on the stiffness parameters of bus equipped with hydraulically interconnected suspension [J]. Dual-use Technology and Products,2016(18):71—73. (In Chinese)
  [9]    章杰,周敏,張邦基,等. 装有液压互联悬架的矿山车辆动力学分析与实验研究[J]. 汽车工程,2016,38(6):716—724.
  ZHANG J,ZHOU M,ZHANG B J,et al. Dynamics analysis and experimental study on a mining vehicle fitted with hydraulically interconnected suspension [J]. Automobile Engineering,2016,38(6):716—724. (In Chinese)
  [10]  丁飞,张农,韩旭. 抗俯仰液压互联悬架三轴重型货车动态特性[J]. 汽车工程学报,2011,1(4):415—423.
  DING F,ZHANG N,HAN X. Dynamics analysis of pitch-resistant hydraulically interconnected suspensions for tri-axle straight trucks[J]. Chinese Journal of Automotive Engineering,2011,1(4):415—423. (In Chinese)
  [11] DING F,ZHANG N,LIU J,et al. Dynamics analysis and design methodology of roll-resistant hydraulically interconnected suspensions for tri-axle straight trucks[J]. Journal of the Franklin Institute,2016,353(17):4620—4651.
  [12]  WILDE J R,HEYDINGER G J,GUENTHER D A,et al. Experimental evaluation of fishhook maneuver performance of a kinetic suspension system [R]. Washington DC:SAE International,2005:387—396.
  [13]  陈盛钊,钟义旭,张邦基,等. 液压互联悬架系统关键参数对车辆动力学响应影响及试验验证[J]. 机械工程学报,2017,53(14):39—48.
  CHEN S Z,ZHONG Y Y,ZHANG B J,et al. Influence of key parameters of hydraulically interconnected suspension on vehicle dynamics and experimental validation [J]. Journal of Mechanical Engineering,2017,53(14):39—48. (In Chinese)
  [14]  陈盛钊,张农,张邦基,等. 液压互联悬架关键参数对车辆频响特性的影响[J]. 湖南大学学报(自然科学版),2017,44(2):16—25.
  CHEN S Z,ZHANG N,ZHANG B J,et al. Influence of key parameters of hydraulically interconnected suspension on frequency domain characteristics of vehicles[J]. Journal of Hunan University(Natural Sciences),2017,44(2):16—25. (In Chinese)
  [15]  彭鹏,张邦基,章杰,等. 装有液压互联悬架的某型SUV车辆动力学分析及路试验证[J]. 中国机械工程,2016,27(20):2813—2821.
  PENG P,ZHANG B J,ZHANG J,et al. Vehicle dynamics analysis and road rest of a sports utility vehicle equipped with hydraulically interconnected suspension[J].China  Mechanical Engineering,2016,27(20):2813—2821. (In Chinese)
  [16]  ZHAO H X,ZHANG B J,ZHANG N,et al. Modeling and control strategy for a height adjustable and anti-roll hydraulically interconnected suspension[J]. Journal of Vibration & Shock,2018,37(3):202—209.
  [17]  ZHANG J,DENG Y W,ZHANG N,et al. Vibration performance analysis of a mining vehicle with bounce and pitch tuned hydraulically interconnected suspension[J]. Chinese Journal of Mechanical Engineering,2019,32(1):5—9.
  [18]  高红博. 半挂汽车列车转弯制动方向稳定性及控制策略研究[D]. 长春:吉林大学交通学院,2014:59—213.
  GAO H B. Research on directional stability and control strategy of tractor-semitrailer steering and braking[D]. Changchun:Transportation College of Jilin University,2014:59—213. (In Chinese)
  [19]  聂枝根,王万琼,宗长富,等. 基于线性变参数实时简化模型的重型半挂车稳定性控制策略[J]. 中国公路学报,2018,31(1):3—8.
  NIE Z G,WANG W Q,ZONG C F,et al. Stability control strategy of heavy semi-trailer based on real-time simplified model of linear variable parameters [J]. Journal of China Highway,2018,31(1):3—8. (In Chinese)
  [20]  XU X M,ZHANG L,JIANG Y P,et al. Active control on path following and lateral stability for truck-trailer combinations[J]. Arabian Journal for Science and Engineering,2019,44(2):1365—1377.
  [21]  BAYAR K,UNLUSOY Y S. Steering strategies for multi-axle vehicles[J]. International Journal of Heavy Vehicle Systems,2008,15(2/3/4):1—31.
转载注明来源:https://www.xzbu.com/4/view-15164358.htm