您好, 访客   登录/注册

基于BDNF假说的度洛西汀治疗抑郁症的相关研究

来源:用户上传      作者:周和统 黄满丽

  [摘要] 抑郁症是一种常见的情感性精神障碍,目前发病机制尚不明确。抑郁症有多种生物学假说,其中神经营养假说认为,神经营养因子对神经生长、存活和可塑性具有重要的作用。在哺乳动物中,脑源性神经营养因子(BDNF)是一种重要的神经营养因子,BDNF水平的降低可能是抑郁症发病的重要机制之一。度洛西汀是临床上常用的SNRI类抗抑郁剂,动物实验和临床研究均表明度洛西汀发挥抗抑郁作用可能与BDNF通路有着紧密的联系。BDNF的表达可能与抗抑郁疗效、认知功能的改善相关。本文对基于BDNF假说的度洛西汀治疗抑郁症的研究进行综述。
  [关键词] 抑郁症;神经营养因子;脑源性神经营养因子;度洛西汀
  [中图分类号] R749.4          [文献标识码] A          [文章编号] 1673-9701(2019)25-0166-03
  Literature review of duloxetine in the treatment of depression based on the BDNF hypothesis
  ZHOU Hetong HUANG Manli
  Mental Health Center, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Diagnosis and Treatment of Mental Disorders, Hangzhou 310009, China
  [Abstract] Depression is a common affective disorder, and its pathogenesis is currently unknown. There are a variety of biological hypotheses for depression, in which the neurotrophic hypothesis believes that neurotrophic factors play an important role in nerve growth, survival and plasticity. In mammals, brain-derived neurotrophic factor(BDNF) is an important neurotrophic factor, and the decrease of BDNF level may be one of the important mechanisms of depression. Duloxetine is a commonly used SNRI antidepressant in clinical practice. Both animal experiments and clinical studies have shown that duloxetine may play an antidepressant role and may be closely related to the BDNF pathway. The expression of BDNF may be associated with an improvement in antidepressant efficacy and cognitive function. This article reviews the studies of duloxetine in the treatment of depression based on the BDNF hypothesis.
  [Key words] Depression; Neurotrophic factor; Brain-derived neurotrophic factor; Duloxetine
  抑郁癥是一种常见的情感性精神障碍,主要临床症状是显著的情绪低落、快感缺失、意志减退,可伴有认知功能损害和躯体症状[1]。迄今为止,抑郁症发病机制仍不明确。除了下丘脑-垂体-肾上腺轴(HPA轴)功能异常假说、奖赏通路受损假说和单胺能神经递质紊乱假说,近年来,抑郁症的神经营养假说越来越受到研究者的重视。Duman RS等[2]在2006年提出了抑郁症的神经营养假说,认为抑郁症患者神经营养因子的缺乏,会导致特定脑区神经元的萎缩,从而导致脑功能的改变。目前已经发现了4种主要的神经营养因子,包括脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)、神经营养因子、神经营养因子-3和神经营养因子-4[3,4]。
  1 BDNF与抑郁症的关系
  BDNF在大脑中广泛分布,特别是在皮质和海马部位的表达更丰富,它对神经元的生长、分化和生存有着重要的促进作用,是神经可塑性和脑网络形成的重要调控因子。BDNF主要通过原肌球蛋白激酶B受体(TrkB受体)及促分裂原活化蛋白激酶(MAPK)、磷脂酶C-γ、磷酸肌醇3激酶(PI3K)等下游通路发挥其生物学效应,同时也可能与上游NMDA受体、AMPA受体及其他通路有关[5]。BDNF基因位于人类11p13染色体,该基因第196号核苷酸位点的碱基突变(鸟嘌呤→腺嘌呤),会使BDNF前体蛋白第66号氨基酸由缬氨酸变为蛋氨酸,研究发现Val66Met基因多态性可能是抑郁发生的一个重要遗传因素[6,7]。
  动物应激模型证实,应激所致的抑郁样表现伴随着海马和前额叶等脑区BDNF表达水平显著下降[8]。BDNF基因敲除的小鼠对应激更加敏感,甚至可能自发出现抑郁样行为[9]。对抑郁症患者尸脑的研究也发现,在海马和前额叶等脑区BDNF的表达减少[10]。自杀人群Wernicke脑区的mBDNF浓度下降,与BDNF外显子Ⅳ的启动子区高甲基化水平相关[11]。在抑郁症患者的血清和脑脊液中,BDNF的表达较正常人群明显下降。有研究报道,MDD患者的血清BDNF水平降低,miR132和miR182水平升高,二者呈负相关。且SDS评分与BDNF水平呈负相关,与miR132水平呈正相关。上述结果提示,BDNF调节miRNA或许可被用作抑郁症诊断和治疗的生物标记物[12]。   BDNF與5-羟色胺(5-HT)之间存在着双向调节的作用,而突触5-HT是大多数抗抑郁药发挥作用的靶点。BDNF可以促进5-HT能神经元的存活和形态学的分化,BDNF基因杂合鼠的前脑5-HT水平改变,并且5-HT受体功能受损。5-HT转运体基因敲除鼠的海马和前额叶皮层的BDNF表达降低。上述研究表明,BDNF与5-HT通路之间的紧密联系,对抑郁症的发病和临床症状有着重要的作用[5,13,14]。
  有学者认为,目前临床上常用的抗抑郁剂和物理治疗,如电休克治疗和重复经颅磁刺激治疗,均可能通过促进大脑BDNF的表达,从而改善神经元的功能和突触的可塑性,发挥抗抑郁的疗效。既往的一项Meta分析提示,经过抗抑郁剂治疗的患者,其血清BDNF表达的水平均增高,但与临床症状的改善无明确的关系[6]。研究认为,BDNF的mBDNF/TrkB等信号通路,可能是抗抑郁治疗的重要靶点[7]。
  2 度洛西汀治疗抑郁症与BDNF的关系研究
  度洛西汀是临床上广泛使用的一种5-HT和去甲肾上腺素(NE)双通道抗抑郁剂(SNRI类)。除了针对5-HT通路,度洛西汀也会作用于NE通路,包括NE受体的激活、β-肾上腺素受体的去极化等,可能参与了BDNF介导的海马区神经形成,从而发挥药物的抗抑郁作用[15]。目前,有不少研究从BDNF的角度探索了度洛西汀对抑郁症的治疗机制。
  近10年来,多项动物试验表明度洛西汀长期使用可显著升高小/大鼠的脑BDNF水平。2007年一项研究发现,雄性Sprague-Dawley(SD)大鼠在接受3周度洛西汀灌胃后,前额叶的外显子Ⅴ BDNF mRNA水平显著升高,突触体而非细胞液的成熟BDNF水平也显著升高,提示度洛西汀可能影响BDNF在亚细胞水平的再分布[16]。2008年的另一项研究也发现,接受2周度洛西汀灌胃后,Wistar大鼠前额叶和脑脊液的BDNF总水平显著升高,但外周血浆、血清的BDNF水平无明显变化[17]。2009年一研究发现,接受3周度洛西汀处理的SD大鼠与对照组大鼠相比,在急性游泳应激后,虽然两组的BDNF外显子Ⅳ水平均升高,但仅试验组的外显子Ⅵ、Ⅸ和突触体的成熟BDNF水平显著升高,这提示度洛西汀的药理学干预能使神经保护通路发挥更好的应激应对[18]。2010年一项研究发现,度洛西汀长期治疗可使SERT基因敲除大鼠海马和前额叶的BDNF mRNA外显子Ⅳ表达恢复正常,提示度洛西汀可能是通过此机制恢复正常的神经可塑性,从而发挥抗抑郁的作用[19]。2013年一项研究发现,接受3周度洛西汀和米氮平联合处理后,小鼠强迫游泳表现得到改善,皮质和海马BDNF mRNA水平显著增加,且抗凋亡蛋白(Bcl-2、Bcl-xL)水平升高,促凋亡蛋白(Bax、P53、Bad)水平下降[20]。2016年国内研究人员发现,雄性小鼠若在青少年早期经历社会挫败压力,则在成年期会出现认知灵活性损害伴BDNF水平下降,而成年早期使用度洛西汀干预,可以逆转此认知功能缺陷并增加mPFC的BDNF水平[21]。
  多项临床研究也表明了BDNF可能在度洛西汀改善抑郁症状中发挥着重要的作用。2014年的一项研究纳入25例抑郁症患者,接受为期6周的度洛西汀治疗,并发现基线时外周血BDNF水平越高的患者,其抑郁症状改善的程度越明显[22]。2015年一项研究给予32例MDD患者和30例正常者12周度洛西汀治疗,结果发现,基线时MDD组的BDNF水平显著低于正常组,接受度洛西汀治疗后,早期无反应者(ENR)的BDNF水平升高至正常,早期有反应者(ER)BDNF则几乎无改变,提示ENR与ER可能有不同的神经生物背景[23]。同年,另一项临床研究表明,度洛西汀治疗早期血清BDNF的升高,与治疗后注意功能的改善相关[24]。2017年国内的一项研究纳入了35例未用药抑郁症患者及正常对照,使用西酞普兰或度洛西汀治疗8周,基线及治疗结束后分别测量血清tPA、BDNF、TrkB、proBDNF和p75NTR的水平,结果发现,基线时抑郁症患者的血清tPA、BDNF以及BDNF/proBDNF比值显著低于正常对照,TrkB、proBDNF和p75NTR高于正常对照。治疗8周后,tPA、BDNF、proBDNF、BDNF/proBDNF比值逆转,但p75NTR较基线升高,TrkB无显著变化。这五种蛋白质联合起来具有很好的诊断表现(AUC0.977),敏感性88.1%,特异性92.7%[25]。
  综上所述,BDNF在抑郁症的发病中起着重要的作用。度洛西汀作为一种双通道抗抑郁剂,可能通过BDNF相关的信号通路发挥抗抑郁的作用。BDNF可能是度洛西汀发挥抗抑郁的疗效、改善抑郁症患者认知功能重要的调控介质。
  [参考文献]
  [1] Hirschtritt ME,Kroenke K. Screening for Depression[J]. JAMA,2017,318(8):745-746.
  [2] Duman RS,Monteggia LM. A neurotrophic model for stress-related mood disorders[J]. Biol Psychiatry,2006, 59(12):1116-1127.
  [3] Levy MJF,Boulle F,Steinbusch HW,et al. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression[J]. Psychopharmacology,2018,235(8):2195-2220.
  [4] Su YW,Zhou XF,Foster BK,et al. Roles of neurotrophins in skeletal tissue formation and healing[J]. J Cell Physiol,2018,233(3):2133-2145.   [5] Begni V,Riva MA,Cattaneo A. Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions[J]. Clin Sci(Lond),2017,131(2):123-138.
  [6] 曾端,于文娟,李華芳. 脑源性神经营养因子及相关通路在抗抑郁药中的研究进展[J]. 临床精神医学杂志,2017,27(5): 347-350.
  [7] 胡晓蕊,沈宗霖,许秀峰. 脑源性神经营养因子与抑郁症关系的研究[J]. 临床精神医学杂志,2017,27(2):137-139.
  [8] Duman RS,Aghajanian GK,Sanacora G,et al. Synaptic plasticity and depression:New insights from stress and rapid-acting antidepressants[J]. Nat Med,2016,22(3):238-249.
  [9] Autry AE,Adachi M,Cheng P,et al. Gender-specific impact of brain-derived neurotrophic factor signaling on stress-induced depression-like behavior[J]. Biol Psychiatry,2009,66(1):84-90.
  [10] Duric V,Banasr M,Licznerski P,et al. A negative regulator of MAP kinase causes depressive behavior[J]. Nat Med,2010,16(11):1328-1332.
  [11] Keller S,Sarchiapone M,Zarrilli F,et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects[J]. Arch Gen Psychiatry,2010,67(3):258-267.
  [12] Li YJ,Xu M,Gao ZH,et al. Alterations of serum levels of BDNF-related miRNAs in patients with depression[J]. PLoS One ,2013,8(5):e63648.
  [13] Homberg JR,Molteni R,Calabrese F,et al. The serotonin-BDNF duo:Developmental implications for the vulnerability to psychopathology[J]. Neurosci Biobehav Rev,2014,43:35-47.
  [14] Molteni R,Cattaneo A,Calabrese F,et al. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans[J]. Neurobiol Dis,2010,37(3):747-755.
  [15] Seki K,Yoshida S,Jaiswal MK. Molecular mechanism of noradrenaline during the stress-induced major depressive disorder[J]. Neural Regen Res,2018,13(7):1159-1169.
  [16] Calabrese F,Molteni R,Maj PF,et al. Chronic duloxetine treatment induces specific changes in the expression of BDNF transcripts and in the subcellular localization of the neurotrophin protein[J]. Neuropsychopharmacology,2007,32(11): 2351-2359.
  [17] Mannari C,Origlia N,Scatena A,et al. BDNF level in the rat prefrontal cortex increases following chronic but not acute treatment with duloxetine,a dual acting inhibitor of noradrenaline and serotonin re-uptake[J]. Cell Mol Neurobiol,2008,28(3):457-468.
  [18] Molteni R,Calabrese F,Cattaneo A,et al. Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine[J]. Neuropsychopharmacolog,2009,34(9):1523-1532.   [19] Calabrese F,Molteni R,Cattaneo A,et al. Long-term duloxetine treatment normalizes altered brain-derived neurotrophic factor expression in serotonin transporter knockout rats through the modulation of specific neurotrophin isoforms[J]. Mol Pharmacol,2010,77(5):846-853.
  [20] Engel D,Zomkowski AD,Lieberknecht V,et al. Chronic administration of duloxetine and mirtazapine downregulates proapoptotic proteins and upregulates neurotrophin gene expression in the hippocampus and cerebral cortex of mice[J]. J Psychiatr Res,2013,47(6):802-808.
  [21] Xu H,Zhang Y,Zhang F,et al. Effects of duloxetine treatment on cognitive flexibility and BDNF expression in the mPFC of adult male mice exposed to social stress during adolescence[J]. Front Mol Neurosci,2016,9:95.
  [22] Mikoteit T,Beck J, Eckert A,et al. High baseline BDNF serum levels and early psychopathological improvement are predictive of treatment outcome in major depression[J].Psychopharmacology(Berl),2014,231(15):2955-2965.
  [23] Fornaro M,Escelsior A,Rocchi G,et al. BDNF plasma levels variations in major depressed patients receiving duloxetine[J]. Neurol Sci,2015,36(5):729-734.
  [24] Mikoteit T,Hemmeter U,Eckert A,et al. Improved alertness is associated with early increase in serum brain-derived neurotrophic factor and antidepressant treatment outcome in major depression[J]. Neuropsychobiology,2015, 72(1):16-28.
  [25] Jiang H,Chen S,Li C,et al. The serum protein levels of the tPA-BDNF pathway are implicated in depression and antidepressant treatment[J]. Transl Psychiatry,2017,7(4):e1079.
  (收稿日期:2018-07-27)
转载注明来源:https://www.xzbu.com/6/view-15045093.htm