基于无应力状态量的平面梁节段预制构形计算方法
来源:用户上传
作者:但启联 秦顺全 魏凯 邓鹏 苑仁安
摘要:为探讨平面梁单元无应力状态量与单元预制构形的关系,通过分析平面梁单元在节点位移下的几何构形变化,建立了平面梁单元预制构形参数与单元无应力状态量之间的数学关系,并以悬臂梁为例,以两种线形为输入,对关系式进行验证。结果表明,单元无应力构形与单元无应力状态量之间相互对应,不同的单元无应力状态量对应不同的单元预制构形;两种线形对应的单元预制构形不相同,但二者对主梁节段拼装时节点标高控制无本质影响。对实际工程而言,只要确保节点标高满足目标线形标高控制要求,梁段的预制构形可不同。
关键词:平面梁;分阶段成形结构;预制节段;无应力状态量;预制构形;施工
中图分类号:U445.47 文献标志码:A 文章编号:
Abstract: In order to investigate the relationship between the unstressed state amount and the prefabricated configuration of the plane beam element, the mathematical relationship between parameters of the prefabricated configuration and the unstressed state amount of the plane beam element was established by analyzing the geometrical configuration of the plane beam element considering the displacement of the joint. Taking a cantilever beam as an example, two types of alignment were used as inputs to verify the mathematical relationship. The results show that there is a one-to-one correspondence between the unstressed configuration and the unstressed state amount of the element. The unstressed state amounts of different elements correspond to different prefabricated configurations. The prefabricated configurations of the two alignments are different, but they have no influence on the joint elevation control when assembling the main beam segments. For practical engineering, the prefabricated configuration of the beam segment can be different as long as the joint elevation meets the elevation requirement of the target alignment.
Keywords: plane beam; structure formed in stages; precast segments; unstressed state amount; precast configuration; construction
预制节段施工方法[1-3]是将梁体分为若干节段,在工厂或工地附近制梁场预制后,在桥位处进行组拼形成桥梁的一种施工方法,该方法经济、环保、高效,节段便于工厂化生产,质量易于控制,在现代桥梁施工中被广泛采用。采用预制节段施工方法的关键是确定并精确制造出能满足主梁线形的所有梁段。对于主梁节段预制,常用的方法有长线法[4-5]和短线法[6-9]。长线法是按设计的制梁线形制作固定曲线底座,预制节段在该固定底座上逐段生成,由于各节段间的相对几何关系由底座曲线所确定,精度易于控制。该方法对台座稳定性和预制施工场地要求较高。短线法是在同一可调支架上逐段制造所有梁段的方法,它以已完成预制的相邻节段一端作为端模,通过调整与端模的角度实现预制节段的线形,制造梁段的线形在与已成梁段的匹配中实现,其精度主要取决于线形的调整精度。长线法和短线法制造梁段前需准确计算主梁的制造线形,以使梁段在组拼后线形满足主梁设计线形要求。
近年来,有学者基于无应力状态控制法思想,对预制节段施工主梁节段制造和安装问题展开了研究。余昆等[10]针对钢箱梁斜拉桥悬臂拼装施工线形控制问题,提出基于无应力状态法理论的主梁线形控制的方法,通过主梁制造线形推算梁段间相对几何关系,用以指导梁段的制造和安装,使最终成桥状态内力和线形满足目标要求。吴运宏等[11]针对钢箱梁斜拉桥主梁线形控制问题,提出考虑内力修正的主梁节段预制尺寸确定方法。颜东煌等[12]基于自适应无应力构形控制思想,推导了主梁节段轴线夹角及节段制造参数公式。以上方法在确定节段预制构形时,均需事先获得主梁制造线形,由制造线形通过几何递推确定梁段间相对几何关系和梁段预制参数,过程较繁琐。
无应力状态控制法理论[13-15]阐明了结构施工过程与最终成形状态之间的关系,指出分阶段施工桥梁控制的核心是构建单元无应力状态量。单元无应力状态量是结构单元本身的稳定固有量,表征了单元无应力时的几何尺寸和形状,将其回归到单元预制构形确定并用以指导节段的预制施工,具有工程实际意义。文献[16]建立了基于平面梁单元的分阶段成形结构线形控制方程,由方程可直接求解结构单元无应力状态量。若要用单元无应力状态量来确定单元預制构形,首先需明确二者间的对应关系。笔者通过对矩形平面梁单元变形过程分析,建立单元无应力状态量与预制构形参数间的数学关系,并通过数值算例对关系式进行验证。 参考文献:
[1] MULLER J. Ten years of experience in precast segmental construction [J]. PCI Journal, 1975, 20(1): 28-61.
[2] ROMBACH G A, ABENDEH R. Bow-shaped segments in precast segmental bridges [J]. Engineering Structures, 2008, 30(6): 1711-1719.
[3] SHIM C S, KIM D W, KONG D. Structural performance of precast segmental composite pier cap [J]. IABSE Congress Report, 2012, 18(2): 1988-1993.
[4] KATO H, MATSUOKA Y, YAMAGUCHI S. Production of the PC girder by long line match cast method : Tohoku Jukan Line [J]. Journal of Prestressed Concrete, 2013, 55(1):17-24. (in Japanese)
[5] MEHLE J S. Jigsaw bridge puzzle: innovative fabrication makes onsite assembly a breeze [J]. Roads & Bridges, 2002, 40(3): 34-37.
[6] 周凌宇,郑恒.基于坐标变换的短线预制梁段匹配误差调整[J].桥梁建设,2016,46(5): 71-76.ZHOU L Y, ZHENG H. Matching error adjustment of girder segments precast by short line match method based on coordinate transformation [J]. Bridge Construction, 2016, 46(5): 71-76. (in Chinese)
[7] 刘斌.香港东区立交工程短线法节段梁施工技术[J].世界桥梁,2015,43(2):25-28.LIU B. Short-line segmental construction of eastern interchange project in Hongkong [J]. World Bridges, 2015,43(2):25-28. (in Chinese)
[8] HUANG Y, ZHENG H H, WANG M, et al. Geometry control technology of transition curve section in cross-sea bridge erected by precasting segment girder [J]. Applied Mechanics and Materials, 2012, 256-259: 1548-1553.
[9] HUANG Y, WU X F. Prefabrication and erection technology of wide box girders in cross-sea bridge [J]. Advanced Materials Research, 2015, 1065-1069: 882-888.
[10] 余昆, 李景成. 基于无应力状态法的悬臂拼装斜拉桥的线形控制[J]. 桥梁建设, 2012,42(3): 44-49.
YU K,LI J C . Geometric shape control of cantilever assembled cable-stayed bridge based on unstressed state method [J]. Bridge Construction, 2012,42(3): 44-49. (in Chinese)
[11] 吴运宏, 岳青, 江湧, 等. 基于无应力状态法的钢箱梁斜拉桥成桥目标线形的实现[J]. 桥梁建设, 2012, 42(5): 63-68.WU Y H, YUE Q, JIANG Y, et al. Realization of target geometric shapes of completed bridge of steel box girder cable-stayed bridge based on unstressed state method [J]. Bridge Construction, 2012, 42(5): 63-68. (in Chinese)
[12] 颜东煌, 陈常松, 董道福, 等. 大跨度钢主梁斜拉桥的自适应无应力构形控制[J]. 中国公路学报, 2012, 25(1): 55-58, 82.YAN D H, CHEN C S, DONG D F, et al. Control of self-adaptive zero-stress configuration for long-span cable-stayed bridge with steel main girders [J]. China Journal of Highway and Transport, 2012, 25(1): 55-58 ,82. (in Chinese)
[13] 秦顺全. 分阶段施工桥梁的无应力状态控制法[J]. 桥梁建设, 2008, 38(1): 8-14.QIN S Q. Unstressed state control method for bridges constructed in stages [J]. Bridge Construction, 2008, 38(1): 8-14. (in Chinese)
[14] 苑仁安, 秦顺全, 王帆, 等. 基于平面梁单元的几何非线性分阶段成形平衡方程[J]. 桥梁建设, 2014, 44(4): 45-49.YUAN R A, QIN S Q, WANG F, et al. Equilibrium equation for geometric nonlinearity of structure formed in stages based on plane beam elements [J]. Bridge Construction, 2014, 44(4): 45-49. (in Chinese)
[15] 许磊平, 秦顺全, 马润平, 等. 基于平面壳单元的分阶段成形结构平衡方程[J]. 西南交通大学学报, 2013, 48(5): 857-862.XU L P, QIN S Q, MA R P, et al. Equilibrium equation derivation of structures formed by stages based on plane shell element [J]. Journal of Southwest Jiaotong University, 2013, 48(5): 857-862. (in Chinese)
[16] 但启联, 秦顺全, 魏凯, 等. 基于平面梁单元的分阶段成形结构线形控制方程[J]. 桥梁建设, 2017, 47(4): 42-47.DAN Q L, QIN S Q, WEI K, et al. Equation for geometric shape control of structure formed in stages based on plane beam elements [J]. Bridge Construction, 2017, 47(4): 42-47. (in Chinese)
(編辑:胡英奎)
转载注明来源:https://www.xzbu.com/8/view-15016277.htm