碳青霉烯类耐药肠杆菌科细菌实验室检测的研究
来源:用户上传
作者:
摘要:碳青霉烯類耐药肠杆菌科细菌(CRE)已经成为全球性公共卫生问题,这类细菌往往伴随高致病率、高致残率、高死亡率,为临床治疗带来了极大的挑战。CRE的耐药机制主要是产生碳青霉烯酶。快速、准确地检测产碳青霉烯酶的肠杆菌科细菌,对于合理使用抗生素,预防和控制产酶菌株的传播具有重要意义。本文就实验室检测肠杆菌科细菌产碳青霉烯酶的研究方法进展作一综述。
关键词:肠杆菌科细菌;碳青霉烯酶;表型检测;碳青霉烯灭活试验
中图分类号:R33 文献标识码:A DOI:10.3969/j.issn.1006-1959.2019.19.009
文章编号:1006-1959(2019)19-0025-04
Laboratory Test of Carbapenem-resistant Enterobacteriaceae Bacteria
SONG Jing,RONG Jian-rong
(Department of Clinical Laboratory,Affiliated Hospital of Shanxi Medical University,Taiyuan 030032,Shanxi,China)
Abstract:Carbapenem-resistant Enterobacteriaceae (CRE) has become a global public health problem. These bacteria are often accompanied by high morbidity, high disability, and high mortality, which have brought great treatment to clinical treatment challenge. The mechanism of CRE resistance is mainly the production of carbapenemases. Rapid and accurate detection of Enterobacteriaceae bacteria producing carbapenemase is of great significance for the rational use of antibiotics to prevent and control the spread of enzyme-producing strains. This article reviews the progress of laboratory research on the detection of carbapenemase in Enterobacteriaceae.
Key words:Enterobacteriaceae;Carbapenemase;Phenotypic detection;Carbapenem inactivation test
肠肝菌科细菌多数是人体的正常菌群,可引起呼吸道、泌尿道和手术切开等部位的感染,在临床分离中居首位。随着广谱抗菌药物的广泛使用,多药耐药肠肝菌科细菌的比重不断增加,临床药物选择也更加困难。碳青霉烯类耐药肠杆菌科细菌(carbapenem-resistant enterobacteriaceae,CRE)已经成为全球性公共卫生问题,其CRE耐药机制主要包括产生各种类型碳青霉烯酶、膜孔蛋白缺失或突变或其联合产超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC)和外排泵的过度表达[1],其中产生碳青霉烯酶是最常见的耐药机制,碳青霉烯酶是指能够明显水解亚胺培南或美罗培南的一类β内酰胺酶,包括Ambler分子分类为A、B、D类酶[2-5]。A类为丝氨酸酶,属于Bush分群中的第2f亚组,多见于一些肠杆菌科细菌;B类为金属酶,属于Bush分群中的第3组,多见于铜绿假单胞菌、不动杆菌、肠杆菌科菌;D类丝氨酸酶,属于Bush分群中2d亚组,仅见于不动杆菌。编码这些酶的基因通常存在于可移动基因元件上,通过质粒及转座子在细菌之间进行水平传播,从而使碳青霉烯酶不仅仅局限在碳青霉烯类耐药肠杆菌科细菌,同时也加快了产碳青霉烯酶耐药菌的出现和传播。因此,快速、准确地检测产碳青霉烯酶的肠杆菌科细菌,对于合理使用抗生素,预防和控制产酶菌株的传播具有重要意义。本文就实验室检测肠杆菌科细菌产碳青霉烯酶的研究方法进展作一综述。
1碳青霉烯酶检测概况
准确检测肠杆菌科细菌对碳青霉烯类抗菌药物的耐药性是筛选产酶菌株的关键,常见的检测方法包括表型检测方法、分子学检测方法、质谱检测方法及免疫检测方法。临床微生物实验室通常通过药物敏感试验来确定菌株是否有碳青霉烯酶产生,其检测方法主要为最低抑菌浓度(MIC)测定法及纸片扩散法。当MIC值升高或抑菌环直径缩小到一定范围,则提示分离菌株为可疑的CRE菌株。也可根据美国临床实验室标准化协会(NCCLS)制定的碳青霉烯类抗生素折点来判断,但因其耗时长、对某些存在膜孔蛋白缺失及高产AmpC酶的菌株易产生假阳性结果、对碳青霉烯类药物水解能力弱的菌株可能产生假阴性等因素,使得产酶株与非产酶株药敏结果会出现部分重叠。因此,需要通过实验室进一步检测以确定菌株是否产生了碳青霉烯酶。 2碳青霉烯酶表型检测
2.1改良Hodge试验 改良Hodge试验是美国临床实验室标准化协会(CLSI)在2009年推荐的检测肠杆菌科细菌碳青霉烯酶表型的常规方法。通过利用产碳青霉烯酶菌株对碳青霉烯类抗生素的水解能力,使碳青霉烯敏感菌株在产酶菌株与碳青霉烯类纸片之间呈现锥状突起的现象,该试验操作过程简单,耗材低,多次试验结果一致,具有极好的准确性和重复性,受环境影响较低,阳性率也较高,但需要培养16~24 h,时效性较差。但因其对NDM型产酶菌株有较高的假阴性率,Girlich D等[6]研究表明,改良Hodge试验对于检测A类KPC和D类OXA-48型碳青霉烯酶具有很好的敏感性,通过体外添加锌离子可提高NDM、IMP及VIM型金属酶菌株的检出率。此外,Pasteran F等[7]通过在MH培养基中加入非离子表面活性剂Triton X-10,使外膜周质中β-内酰胺酶释放,也有利于可溶性B类碳青霉烯酶的檢测。另有研究表明,改良Hodge试验对仅携带blaKPC耐药基因的菌株或同时携带blaKPC和blaOXA-48耐药基因的菌株检测显示阴性,可能与基因不表达有关[8]。
2.2 Carba NP实验 Dortet L等[9]报道了一种新型的水解β-内酰胺环的试验,称为Carba NP,根据水解后溶液pH的改变,从而使显色底物发生颜色变化的一种生化反应。该实验显示出了极高的特异性和灵敏性,并可在2 h之内得出阳性结果,很大程度上减少了临床标本周转时间。除可以检测肠杆菌科细菌外,还可以检测铜绿假单胞菌。对于不动杆菌属,Carba NP实验虽然能够检测产金属酶的菌株,但是对常见的OXA酶检测效果差。此外,不同的分离培养基对试验结果影响较大,试验时需使用非选择性培养基。Dortet L等[9]指出,如果菌株分离自麦康凯平板,会有30%的菌株受到限制,可能是由于细菌在培养基时,发酵乳糖,产生乳酸,影响了反应体系的pH值。因此,尽管Carba NP实验简单快速,但是试验需要一些特殊的试剂,操作繁琐、颜色判断受主观因素、培养基种类等影响,限制了该实验的发展。需要注意的是,近些年来,市场上推出了基于Carba NP实验的in-house Carba NP(iCarba NP)、commercial Carba NP(cCarba NP)、BLUE Carba(Bcarba)等商品化试剂。不同的方法有各自的优点,然而均对OXA-48型和GES-5碳青霉烯酶显示出较低的水解活性[10-12]。
2.3碳青霉烯类灭活(CIM)实验 2015年,van der Zwaluw K等[13]提出CIM实验,原理是通过细菌产生的碳青霉烯酶对美罗培南纸片的水解作用,从而使指示菌株得以繁殖,可在8 h之内检测革兰阴性杆菌的碳青霉烯酶。检测酶型范围广泛,包括KPC、NDM、OXA-48型、VIM、IMP及OXA-23型,适用于肺炎克雷伯菌、阴沟肠杆菌、大肠埃希菌等肠杆菌科,但不适用于非发酵菌属细菌。2017年美国临床实验室标准协会(clinical and laboratory standards institute,CLSI)对CIM实验操作步骤进行了改良,并将改良的碳青霉烯类灭活实验(modified carbapenem inactivation method,mCIM)中纳入抗菌药物敏感试验执行标准M100-S27[14],主要改变步骤为:①以胰大豆蛋白肉汤培养基代替无菌水配制菌悬液;②减少接种量为1 μl;③延长温育时间达4 h;④以抑菌圈直径大小作为结果判定依据,增加中介值。马玉兰等[15]比较CIM实验与mCIM实验筛选肠杆菌科细菌产碳青霉烯酶能力,mCIM试验敏感度为95.0%,较CIM实验明显增加,其原因是mCIM试验通过增加孵育时间,提高了产酶能力弱的菌株的筛选能力,如产GES酶的菌株[16]。此外,Zhou M等[17]研究比较了mCIM实验使用不同底物检测产酶菌株的性能,其中美罗培南的特异性及敏感性最高(分别达99.0%和99.6%),但是检测周期较长仍然是mCIM试验的最大弊端。Jing X等[18]对mCIM实验孵育过程进行了改良,直接将待检测菌涂以亚胺培南纸片的一面,若检测菌为肠杆菌科细菌,将涂有菌的一面按照纸片操作法操作规程操作,结果判读:若亚胺培南抑菌圈直径为≤22 mm则结果阳性,判为产碳青霉烯酶菌株;若抑菌圈直径≥26 mm则结果阴性,判为非产碳青霉烯酶菌株;若抑菌圈直径为23~25 mm判为中介,另对196株肠杆菌科细菌进行了检测,结果表明,sCIM与mCIM的符合率为100%,对于产VIM-4的铜绿假单胞菌及鲍曼不动杆菌,sCIM有较低的假阴性率,一定程度上缩短了标本周转时间。但是目前CLSI并没有推荐其为常规检测方法,sCIM是否可以成为筛选碳青霉烯酶的一个较为理想的方法需后续大量研究进一步证实。
3分子学检测方法
3.1传统PCR 利用分子检测技术检测常见碳青霉烯酶基因可能是检测碳青霉烯酶最有效、最准确、最快速的方法,其一直作为检测方法的金标准,被广泛应用与临床各种检测中。目前基于PCR方法的多重PCR方法已广泛应用于KPC及变异体[19]、IMP、VIM、OXA-23[20]、NDM及OXA-48[21-24]检测。
3.2全基因组测序 全基因组测序是一种最为全面的分子学检测方法,这种技术可以获得所有已知耐药机制细菌的全部基因组序列。因此,可以为不同种类的抗生素提供耐药信息,如孔道蛋白突变导致的耐药、质粒介导的相关耐药基因的信息、细菌的进化谱系等[25]。此外,全基因测序的结果能够进行储存,可以对新的耐药机制及毒力因素进行测定,但这种方法往往依赖常规培养方法来分离感兴趣的致病菌,需从培养物中选择一个或几个菌落进行测序,对无法培养、浓度低于培养检测水平或在临床样本中未被怀疑的病原体进行鉴定时存在局限性。此外,全基因组测序由于价格昂贵、技术要求高等原因,其开展受到限制。相信随着技术的优化、程序的自动化、成本的降低,全基因测序将会得到普遍的应用。 4其他檢测方法
4.1质谱检测方法 自2011年发展基质辅助激光解吸电离飞行时间质谱(MALDI-TOF/MS)用于碳青酶烯酶检测以来[24,25],该项检测技术已成为微生物属和物种检测的成熟平台,在临床微生物实验室中鉴定和应用也越来越普遍。其在碳青霉烯酶快速鉴定中主要发挥水解作用,具体操作步骤是将细菌培养物与碳青霉烯类抗生素共同孵育,随后进行离心,取上清液进行质谱分析。该方法的敏感性和特异性分别在77%~100%和94%~100%之间,4 h内可以完成。Hrabák J等[26]对质谱检测方法进行了改良,推荐在缓冲液中增加碳酸氢盐,可以使OXA-48型的检出率明显提高(不影响其他酶型的检出,敏感性提高到98%)。但使用MALDI-TOF法检测碳青霉烯酶是需要使用与MALDI-TOF配套的仪器设置,而不是使用一般食品药品监督管理局(FDA)认证的微生物鉴定技术。因此,该测试目前仅对这些系统的专家用户可用,且需要内部验证,其临床影响目前可以忽略不计。但随着碳青霉烯酶检测手段的日益开发和普及,其可能在将来对碳青霉烯酶的检测发挥作用。
4.2免疫层析方法 免疫层析方法是一种以抗体为基础用于检测碳青霉烯酶的方法。对于OXA-48-like及变异体OXA-181型,OXA-204型,OXA-232型的检测表现出了良好的检测性能。但是对广谱头孢菌素敏感,碳青霉烯类耐药的OXA-163型或OXA-405型的菌株检测不出来。有报道指出[27],免疫层析方法操作简单,可以在几分钟之内快速及准确从培养物中鉴定OXA-48及KPC型的菌株,其阳性预测值及阴性预测值分别可达100%和92.3%,且不受培养基种类的影响,但需要增加接种量来提高某些型别的检出率,尤其是KPC-6、KPC-7、KPC-8及KPC-11型别的菌株。目前,免疫层析方法只能针对目标酶型进行检测,抗体成本高,存在局限性。
5总结
随着碳青霉类抗生素的广泛应用,耐碳青霉烯类抗生素的肠杆菌科菌株逐渐增加,其耐药机制主要是产生碳青霉烯酶。碳青霉烯酶的检测方法主要有改良Hodge试验、Carba NP实验、CIM实验、分子学检测方法、质谱检测、免疫层析方法。不同的方法各自有优缺点,改良Hodge试验对金属酶的检测性能差,尤其是NDM型产酶菌株;Carba NP试验为生化反应,需要特殊试剂,操作繁琐;分子检测检测技术及免疫学方法分别只能对已知存在的碳青霉烯酶基因及目标酶型进行检测;全基因组测序可对未知基因组序列进行测序,但因其人员技术及仪器设备要求高,限制其发展。MALDI-TOF/MS作为新型的检测手段开始用于细菌耐药方面的研究,对于CRE的检测主要依据碳青霉烯药物的水解,对具体的酶类型无法分辨,如果能对酶类型进行检测,将会有更大的应用空间。免疫学方法同样只能针对目标酶型进行检测,抗体成本高,存在一定局限性。
目前,CLSI推荐将mCIM作为肠杆菌科细菌的筛选方法,建议在mCIM中使用CLSI折点来确定结果,此方法试验操作简单,步骤少,其试验结果易于解释,而且不受菌龄、药敏纸片以及细菌是否产生黏液影响,在大多常规实验室都可以开展,且培养时间中等,至少需要6 h或者过夜。相信随着临床微生物实验室相关数据的不断积累和方法学的进一步提高,此方法将成为检测CRE的基础方法。
参考文献:
[1]Little ML,Qin X,Zerr DM,et al.Molecular diversity in mechanisms of carbapenem resistance in paediatric Enterobacteriaceae[J].Int J Antimicrob Agents,2012,39(1):52-57.
[2]Nordmann P,Poirel L.Emerging carbapenemases in Gramnegative aerobes[J].Clin Microbiol Infect,2002(8):321-331.
[3]Livermore DM,Woodford N.Carbapenemases:a problem in waiting?[J].Curr Opin Microbiol,2000(3):489-495.
[4]Bush K.Metallo-beta-lactamases:a class apart[J].Clin Infect Dis,1998,27(Suppl 1):S48-S53.
[5]Rasmussen BA,Bush K.Carbapenem-hydrolyzing beta-lactamases[J].Antimicrob Agents Chemother,1997(41):223-232.
[6]Girlich D,Poirel L,Nordmann P.Value of the modified Hodge test for detection of emergingcarbapenemases in Enterobacteriaceae[J].J Clin Microbiol,2012,50(2):477-479.
[7]Pasteran F,Gonzalez LJ,Albornoz E,et al.Triton Hodge Test: Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other Carbapenemase Producers[J].J Clin Microbiol,2016,54(3):640-649.
[8]Roth AL,Kurpiel PM,Lister PD,et al.bla(KPC) RNA expression correlates with two transcriptional start sites but not always with gene copy number in four genera of Gram-negative pathogens[J].Antimicrob Agents Chemother,2015,5(8):3936-3938. [9]Dortet L,Bréchard L,Poirel L,et al.Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test[J].J Med Microbiol,2014,63(Pt 5):772-776.
[10]Segawa T,Matsui M,Suzuki M,et al.Utilizing the Carba NP test as an indicator of expression level of carbapenemase genes in Enterobacteriaceae[J].J Microbiol Methods,2017(133):35-39.
[11]Literacka E,Herda M,Baraniak A,et al.Evaluation of the Carba NP test for carbapenemase detection in Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp,and its practical use in the routine work of a national reference laboratory for susceptibility testing[J].Eur J Clin Microbiol Infect Dis,2017,36(11):2281-2287.
[12]Akyar I,Kaya Ayas M,Karatuna O.Performance Evaluation of MALDI-TOF MS MBT STAR-BL Versus In-House Carba NP Testing for the Rapid Detection of Carbapenemase Activity in Escherichia coli and Klebsiella pneumoniae Strains[J].Microb Drug Resist,2019.
[13]van der Zwaluw K,de Haan A,Pluister GN,et al.Carbapenem Inactivation Method (CIM),a simple and low-cost alternative to the Carba NP test to assess phenotypic carbapenemase activity in Gram-negativerods[J].PLoS One,2015(10):e0123690.
[14]Pragasam AK,Veeraraghavan B,Bakthavatchalam YD,et al.Strengths and limitations of various screening methods for carbapenem-resistant Enterobacteriaceae including new method recommended by clinical and laboratory standards institute,2017:A tertiary care experience[J].Indian J Med Microbiol,2017,35(1):116-119.
[15]馬玉兰,宋文杰,梁屹,等.CIM与mCIM筛选肠杆菌科细菌产碳青霉烯酶能力比较[J].河北医科大学学报,2018,39(8):943-948.
[16]Aktas E,Malkosoglu G,Otlu B,et al.Evaluation of the Carbapenem Inactivation Method for Detection of Carbapenemase-Producing Gram-Negative Bacteria in Comparison with the RAPIDEC CARBA NP[J].Microb Drug Resist,2017,23(4):457-461.
[17]Zhou M,Wang D,Kudinha T,et al.Comparative Evaluation of Four Phenotypic Methods for Detection of Class A and B Carbapenemase-Producing Enterobacteriaceae in China[J].J Clin Microbiol,2018,56(8):e00395-18.
[18]Jing X,Zhou H,Min X,et al.The Simplified Carbapenem Inactivation Method (sCIM) for Simple and Accurate Detection of Carbapenemase-Producing Gram-Negative Bacilli[J].Front Microbiol,2018(9):2391.
[19]Glupczynski Y,Evrard S,Ote I,et al.Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria[J].J Antimicrob Chemother,2016,71(5):1217-1222. [20]Chen L,Mediavilla JR,Endimiani A,et al.Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (bla KPC) variants[J].J Clin Microbiol,2011,49(2):579-585.
[21]Subirats J,Royo E,Balcázar JL,et al.Real-time PCR assays for the detection and quantification of carbapenemase genes (bla KPC, bla NDM, and bla OXA-48) in environmental samples[J].Environ Sci Pollut Res Int,2017,24(7):6710-6714.
[22]Weiβ D,Engelmann I,Braun SD,et al.A multiplex real-time PCR for the direct,fast,economic and simultaneous detection of the carbapenemase genes blaKPC ,blaNDM ,blaVIM and blaOXA-48[J].J Microbiol Methods,2017(142):20-26.
[23]Mathers AJ,Stoesser N,Sheppard AE,et al.Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from wholegenome sequencing[J].Antimicrob Agents Chemother,2015(59):1656-1663.
[24]Burckhardt I,Zimmermann S.Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours[J].J Clin Microbiol,2011,49(9):3321-3324.
[25]Hrabák J,Walková R,Studentová V,et al.Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J].J Clin Microbiol,2011,49(9):3222-3227.
[26]Hrabák J,Studentová V,Walková R,et al.Detection of NDM-1,VIM-1,KPC,OXA-48,and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J].J Clin Microbiol,2012,50(7):2441-2443.
[27]Youn JH,Drake SK,Weingarten RA,et al.Clinical Performance of a Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Detection of Certain blaKPC-Containing Plasmids[J].J Clin Microbiol,2016,54(1):35-42.
转载注明来源:https://www.xzbu.com/1/view-15041699.htm