蓝莓侧枝径向振动惯性力的建模及仿真分析
来源:用户上传
作者:
摘 要:蓝莓采摘的最终形式是把生长在侧枝上的蓝莓果实与其侧枝进行分离,因此采摘时所产生振动惯性力的效果要大于果柄自身的承受力。为了更好地实现机械化蓝莓采摘目的,本文针对蓝莓采摘时蓝莓侧枝径向的有阻尼振动惯性力进行研究。针对蓝莓侧枝径向的振动问题,为更接近实际侧枝的振动情况,在数学公式推导当中,考虑加入有阻尼系数,并重点研究了阻尼比对振动力和振幅的影响。通过实验测得采摘蓝莓时侧枝的振动惯性力、作用位置和位移等相关数据,并通过一系列的数学公式推导,建立侧枝径向有阻尼自由振动惯性力的数学模型。基于实测数据和数学模型,再利用MATLAB软件对其进行仿真验证。结果表明:应用径向有阻尼自由振动的惯性力在侧枝中部可以实现对蓝莓的采摘,该成果可以指导振动力作用的位置及方向,为以机械化方式进行采摘蓝莓设备的设计提供理论依据。
关键词:蓝莓;振动惯性力;数学建模;阻尼比;MATLAB
Abstract:The final form of blueberry picking is to separate the blueberry fruit growing on the blueberry branch from its branches, so the vibration force produced by picking is greater than the bearing capacity of the fruit handle itself. In order to better achieve the purpose of mechanized blueberry picking, this paper studies the damped vibration inertial force of the blueberry side branch in the blueberry picking. Aiming at the radial vibration of blueberry lateral branches, in order to get closer to the actual vibration situation of lateral branches, the damping coefficient is considered in the mathematical formula derivation, and the influence of damping ratio on vibration force and amplitude is studied emphatically. The experimental data of the vibration inertia force, action position and displacement of the side branches are measured by experiments, and a series of mathematical formulas are derived to establish a mathematical model of the damped free vibration inertial force of the lateral branches. Based on the measured data and mathematical model, the simulation is verified by MATLAB software. The results show that the application of the inertial force with radial damping and free vibration can realize the picking of blueberry in the middle of the side branches. This result can guide the position and direction of the vibration force, and provide a theoretical basis for the mechanized selection of blueberry equipment.
Keywords:Blueberry; vibration inertia force; mathematical modeling; damping ratio; MATLAB
0 引言
藍莓有“水果之王”的美誉,以其保健作用、经济价值和市场价值得到人们的普遍认可[1-6]。在蓝莓种植过程中,其成熟周期短、耗费人工多等缺点,使得蓝莓的采摘成为蓝莓产业链中最繁琐的环节[7-9]。蓝莓类似于葡萄,其果实比葡萄更小,在其柔软度上与葡萄相似,采摘期短,因此其采收也成为了典型的劳动密集型产业 [10-12] 。目前很多蓝莓产地的采摘技术还停留在人工作业、捡拾作业的水平,所以需要投入大量的人力才能完成采收。因此设计机械振动式采摘来替代人工采摘尤为重要[13-16]。本文对蓝莓采摘时侧枝径向所承受的振动力和作用位置等相关数据进行测量,推导该振动径向上有阻尼的数学公式,并建立蓝莓侧枝的振动模型,为后续采摘机的设计奠定基础。
1 蓝莓侧枝的受力情况及实测数据
建立蓝莓侧枝的三维图形,选取其中一条侧枝作为研究模型,通过简化的示意图(图1)来研究蓝莓侧枝径向的振动情况。要将蓝莓采摘时所受到的振动力进行分解,将其分解成不同方向的力——轴向力和径向力(图2)。当振动力施加在侧枝时,以侧枝自身所在的方向作为坐标轴的x轴,建立空间直角坐标系,并且将采摘时所产生的振动力进行分解,分解成三个方向上的力:fx、 fy、 fz。根据采摘力的分解及分类情况可知,径向振动,是由y轴和z轴方向的fy、 fz所引起,侧枝轴向上的振动是由x轴方向的fx所引起[17-18]。图3为现场蓝莓采摘和对侧枝数据进行实测的实验照片。实测数据见表1和表2。 4 结论
在考虑阻尼比的情况下,对自由振动惯性力公式(18)利用MALTAB软件进行仿真,得到蓝莓侧枝径向有阻尼自由振动惯性力的三维仿真曲线,即图6—图12所示。由这些图的变化趋势可知,在加入实际阻尼比1.24%后,径向上的振动惯性力如图8所示,其衰减的速度较为缓慢,因此径向振动力比较适合蓝莓的采摘,随着振动时间的增加,振动惯性力随之衰减,处于侧枝中间位置的振动惯性力比果实与果柄之间的承受力大,因此达到了对果实的采摘要求。由于振动大的点在枝条顶端,为了避免破坏蓝莓果实本身,因此不将初始端作为振动点,而考虑作用在中部位置,这样就可以实现机械化的采摘。
作用在侧枝剩余点的振动惯性力都比蓝莓和果柄之间所能承受的力要小,因此不满足对果实的采摘要求。综上所述,应用径向有阻尼自由振动的惯性力可以对蓝莓进行采摘,为后续的采摘机更新换代、优化和实际应用提供了研究方向和基础。
【参 考 文 献】
[1]冯靖媛.四川蓝莓产业发展主要问题研究[D]. 绵阳:西南科技大学,2018.
FENG J Y. Research on main problems of blueberry industry in Sichuan[D]. Mianyang: Southwest University of Science and Technology, 2018.
[2]朱玉,黄磊,党承华,等. 高温对蓝莓叶片气孔特征和气体交换参数的影响[J]. 农业工程学报,2016,32(1):218-225.
ZHU Y, HUANG L, DANG C H, et al. Effects of high temperature on leaf stomatal traits and gas exchange parameters of blueberry[J]. Transactions of the CSAE, 2016, 32(1): 218-225.
[3]吳林. 中国蓝莓35 年—科学研究与产业发展[J]. 吉林农业大学学报,2016,38(1):1-11.
WU L. Thirty-five years of research and industry development of blueberry in China[J]. Journal of Jilin Agricultural University, 2016, 38(1):1-11.
[4]王冬,陈度,王书茂,等.基于有限元方法的整形果树振动收获机理分析[J].农业工程学报,2017,33(S1):56-62.
WANG D, CHEN D, WANG S M, et al. Analysis on vibratory harvesting mechanism for trained fruit tree based on finite element method[J]. Transactions of the CSAE, 2017, 33(S1):56-62.
[5]牟文婕,鹿永华.山东省蓝莓产业发展现状、存在问题及对策建议[J].中国果树,2018,60(6):98-102.
MU W J, LU Y H. Present situation, problems and countermeasures of blueberry industry in Shandong province[J]. China Fruits, 2018, 60(6):98-102.
[6]吴思政,梁文斌,聂东伶,等. 高温胁迫对不同蓝莓品种光合作用的影响[J]. 中南林业科技大学学报,2017,37(11):1-8.
WU S Z, LIANG W B, NIE D L, et al. Effects of high temperature stress on photosynthesis of different blueberry varieties[J]. Journal of Central South University of Forestry & Technology, 2017, 37(11):1-8.
[7]李艳芳,聂佩显,张鹤华,等. 蓝莓果实花青苷积累与内源激素含量动态变化[J]. 北京林业大学学报,2017,39(2):64-71.
LI Y F, NIE P X, ZHANG H H, et al. Dynamic changes of anthocyanin accumulation and endogenous hormone contents in blueberry[J]. Journal of Beijing Forestry University, 2017, 39(2):64-71.
[8]孔德刚,刘魏,霍俊伟.等.蓝莓成熟期结合力变化规律的测试与分析[J].东北农业大学学报,2014,45(4):99-106.
KONG D G, LIU W, HUO J W, et al. Test and analysis on variation of blueberry binding force during mature period[J]. Journal of Northeast Agricultural University, 2014, 45(4):99-106.
[9]赵永超,孔德刚,何宇,等. 蓝果忍冬成熟期结合力变化规律的测试分析[J]. 农机化研究,2016,38(4):170-174.
ZHAO Y C, KONG D G, HE Y, et al. A study of lonicera edulis picking force during mature stage[J]. Journal of Agricultural Mechanization Research, 2016, 38(4):170-174. [10]张鹤华,李艳芳,聂佩显,等.蓝莓果实同化物韧皮部卸载路径与糖代谢酶活性[J]. 林业科学,2017,53(3):40-48.
ZHANG H H, LI Y F, NIE P X, et al. Phloem unloading pathway of photosynthates and sucrose-metabolizing enzymes activities in vaccinium corymbosum fruit[J]. Scientia Silvae Sinicae, 2017, 53(3):40-48.
[11]郭丹,韩英群,郝义.箱式气调保鲜对蓝莓果实贮藏期及货架期品质生理影响[J]. 西北农业学报,2016,25 (12):1829-1836.
GUO D, HAN Y Q, HAO Y. Effect of box modified atmosphere storage on quality and physiology of blueberry during storage and shelf-life[J]. Acta Agriculturae Boreali-occidentalis Sinia, 2016, 25(12):1829-1836.
[12]杨春梅,郭明慧,马岩,等.步行割灌机行走部分结构设计与研究[J]. 森林工程,2016,32(5): 48-54.
YANG C M, GUO M H, MA Y, et al. Walking structure design and research of walking brush breaker[J]. Forest Engineering, 2016, 32(5):48-54.
[13]张鹏,沈海龙,林存学.关于红松果用林培育几个问题的讨论[J]. 森林工程,2016,32(3):7-11.
ZHANG P, SHEN H L, LIN C X. Discussion on several problems about the cultivation of fruit forests of Korean pine[J]. Forest Engineering, 2016, 32(3):7-11.
[14]鲍玉冬.机械采收蓝莓振动特性及数值模拟研究[D].哈尔滨:东北林业大学,2015.
BAO Y D. Research on vibration characteristics and numerical simulation of blueberry mechanization harvesting[D]. Harbin: Northeast Forestry University, 2015.
[15]庄逸锋,严斌,李晓锟,等.背负式水果采摘机设计[J].林业机械与木工设备,2018,46(5):41-44.
ZHUANG Y F, YAN B, LI X K, et al. Design of a backpack fruit picking machine[J]. Forestry Machinery & Woodworking Equipment, 2018, 46(5): 41-44.
[16]王雅提,李洋,马成林. 野生林果供应链风险分析与控制研究[J].森林工程,2017,33(4):103-108.
WANG Y T, LI Y, MA C L. Risk analysis and control of wild forest fruit supply chain[J]. Forest Engineering, 2017, 33(4):103-108.
[17]傅岩州.树莓基础物理特性及振动采收参数的试验研究[D].哈尔滨:东北农业大学,2015.
FU Y Z. Study on basic physical properties and vibration harvested parameters of raspberry[D]. Harbin: Northeast Agricultural University, 2015.
[18]许南南. 组合偏心块式三维激振林果采收机的设计与试验[D].杭州:浙江理工大学,2018.
XV N N. Design and experiment on vibratory fruit harvesting mechanism with three-dimensional excitation[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.
[19]李志鹏,赵德金,郭艳玲.基于Matlab蓝莓树枝徑向受迫振动仿真研究[J].森林工程,2014,30(1):84-87.
LI Z P, ZHAO D J, GUO Y L. Simulation of radial blueberry branches forced vibration based on Matlab[J]. Forest Engineering, 2014, 30(1):84-87.
转载注明来源:https://www.xzbu.com/1/view-15217592.htm