您好, 访客   登录/注册

基于迭代自适应方法的近场源二维参数联合估计

来源:用户上传      作者:

  摘 要:针对近场源波达方向(DOA)和距离的联合估计问题,提出一种近场迭代自适应算法(NF-IAA)。首先通过划分二维网格表示出近场区域内信源所有可能的位置,每个位置都看作存在一个潜在的信源入射到阵列上,表示出阵列输出的数据模型;然后通过循环迭代利用上一次谱估计的结果构建信号的协方差矩阵,将协方差矩阵的逆作为加权矩阵估计出每个位置对应的潜在信源能量;最后绘制出三维能量谱图,由于只有真实存在的信源能量不为0,因此谱峰对应的位置即为真实存在信源的位置。仿真实验表明在10个快拍条件下,NF-IAA的DOA分辨概率达到了90%,而二维多重信号分类(2D-MUSIC)算法只有40%;当快拍数降至2时,2D-MUSIC算法已经失效,而NF-IAA仍然能很好地分辨出3个入射信源并且准确地估计出位置参数。随着快拍数和信噪比(SNR)的增加,NF-IAA的估计性能一直优于2D-MUSIC。实验结果表明,NF-IAA具备少快拍条件下高精度、高分辨地估计近场源二维位置参数的能力。
  关键词:迭代自适应方法;加权最小二乘法;二维参数估计;近场源;阵列信号处理
  中图分类号: TN911.6
  文献标志码:A
  Abstract: A Near-Field Iterative Adaptive Approach (NF-IAA) was proposed for the joint estimation of Direction Of Arrival (DOA) and range of near-field sources. Firstly, all possible source locations in the neaar field region were represented by dividing two-dimensional grids. Each location was considered to have a potential incident source mapping to an array, indicating the output data model of the array. Then, through the loop iteration, the signal covariance matrix was constructed by using the previous spectral estimation results, and the inverse of the covariance matrix was used as the weighting matrix to estimate the energy of the potential sources corresponding to each location. Finally, the three-dimensional energy spectrum was figured. Since only the energy of real existing source is not 0, the angles and distances corresponding to the peaks are the two-dimensional location parameters of real existing sources. Simulation experimental results show that the DOA resolution probability of the proposed NF-IAA reaches 90% with 10 snapshots, while the DOA resolution probablity of Two-Dimension Multiple Signal Classification (2D-MUSIC) algorithm is only 40%. When the number of snapshots is reduced to 2, 2D-MUSIC algorithm has failed, but NF-IAA can still distinguish 3 incident sources and accurately estimate the two-dimension location parameters. As the number of snapshots and Signal-to-Noise Ratio (SNR) increase, NF-IAA always performs better than 2D-MUSIC. The experimental results show that NF-IAA has the ability to estimate the two-dimensional location parameters of near-field sources with high precision and high resolution when the number of snapshots is low.
  Key words: iterative adaptive approach; weighted least square; two-dimensional parameter estimation; near-field source; array signal processing
  0 引言
  陣列信号处理技术近几十年来在射电天文、无线通信、地震勘测、雷达探测、水下定位等领域发挥了重要作用。根据信号源传播到接收阵列的距离,阵列表面到2D2/λ的空间范围称为近场,大于2D2/λ的空间范围称为远场,D、λ分别指阵列孔径和工作波长。对远场源来说,阵列接收到的信号可以近似看成平行波,只需要估计出一维波达方向(Direction Of Arrival, DOA)就能确定信号源的位置。对近场源来说,由于信号波前的固有曲率不能忽略,因此需要同时估计DOA和距离二维参数才能确定信号的位置。   针对近场源参数估计问题,Huang等[1]提出的二维多重信号分类(Two-Dimensional Multiple Signal Classification, 2D-MUSIC)算法作为经典的子空间类算法具有超分辨率,但是需要大量的快拍数据才能保证对样本协方差矩阵进行特征分解时信号子空间与噪声子空间不发生混叠;在少快拍条件下,算法性能骤降甚至失效。近年来,基于稀疏重构的近场源参数估计方法[2-5]成为研究的热点。梁国龙等[2]通过构造虚拟远场接收阵列把近场二维参数估计问题转化为两个基于l1范数一维稀疏信号恢复问题,具有较优的估计性能,但该算法损失了一半的阵列孔径。Hu等[3-4]利用接收信号协方差矩阵反对角元素的稀疏表示分步实现了波达方向和距离的稀疏估计。文献[3]的方法比文献[2]的方法具有更低的计算复杂度,而且同样阵元数条件下可以检测更多的信源数,但是需要额外选择正则化参数。文献[5]基于文献[3]中参数分离的思想,利用阵列的对称性先基于加权l1范数优化估计出DOA,再利用稀疏重构的思想估计距离。与文献[3]的方法相比,文献[5]提出的方法具有更好的估计性能,但是正则化参数的选取依旧对估计结果有较大的影响。
  与基于统计理论的子空间类算法相比,文献[2-5]中的方法主要通过求解l1范数约束优化问题实现参数估计,不需要直接对样本协方差矩阵进行特征分解,因此一定程度上降低了对快拍数的要求,但是仍然不能达到只利用少量快拍实现对近场源二维参数进行高精度、高分辨的估计。在一些信号不能长时间稳定或快速时变的应用场景,如水下信号处理、城市无线通信、高速目标追踪、跳频通信等,大量的快拍数据会导致采样时间过长、与真实样本的误差增大或运算速度降低,只利用少量快拍甚至单快拍实现对近场源高精度、高分辨的定位具有重要意义。
  Stoica等提出的估计幅度和相位的迭代自适应方法(Iterative Adaptive Approach for Amplitude and Phase Estimation, IAA-APES)[6-7]、基于协方差稀疏迭代的估计方法(Sparse Iterative Covariance-based Estimation Method, SPICE)[8-9]、通过迭代最小化的稀疏学习算法(Sparse Learning via Iterative Minimization, SLIM)[10]具备在少量甚至一个快拍数据的情况下高分辨率DOA估计的能力,但是只适用于远场窄带信号。
  为了能在少快拍条件下高精度估计近场源参数,本文提出一种近场迭代自适应算法(Near-Field Iterative Adaptive Approach, NF-IAA)。首先基于加权最小二乘法估计出入射信源的能量,然后通过循环迭代对估计结果进行更新直至收敛,最后绘制出三维能量谱图,谱峰对应的DOA和距离即为入射信源的二维位置参数。仿真实验表明在只有2个快拍的情况下,所提算法经过适量迭代就能实现对入射近场源高精度、高分辨的估计。
  4 结语
  本文针对少快拍近场源二维参数联合估计问题提出一种近场迭代自适应算法。首先通过划分二维平面网格表示出区域内所有潜在信源的位置;然后通过循环迭代估计出所有潜在信源的能量;迭代收敛时,真实存在信源位置的能量远远大于其他位置的能量,因此谱峰的位置即为真实入射信源的位置。该算法相比2D-MUSIC算法能够得到更为尖锐的空间谱、更低的旁瓣水平和更小的估计误差,特别是在少快拍条件下具有优越的估计性能。仿真结果验证了本文算法的有效性。同时需要指出,网格划分得越精细估计结果越精确,但同时会增加算法的计算复杂度,下一步应考虑如何在提高估计精度的同时降低算法的计算复杂度。
  参考文献:
  [1] HUANG Y-D, BARKAT M. Near-field multiple sources localization by passive sensor array [J]. IEEE Transactions on Antennas and Propagation, 1991, 39(7): 968-975.
  [2] 梁國龙,韩博,林旺生,等.基于稀疏信号重构的近场源定位[J].电子学报,2014,42(6):1041-1046. (LIANG G L, HAN B, LIN W S, et al. Near-field sources localization based on sparse signal reconstruction [J]. Acta Electronica Sinica, 2014, 42(6): 1041-1046.)
  [3] HU K, CHEPURI S P, LEUS G. Near-field source localization using sparse recovery techniques [C] // Proceedings of the 2014 International Conference on Signal Processing and Communications. Piscataway, NJ: IEEE, 2014: 1-5.
  [4] HU K, CHEPURI S P, LEUS G. Near-field source localization: Sparse recovery techniques and grid matching [C]// Proceedings of the 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM). Piscataway, NJ: IEEE, 2014: 369-372.   [5] 李雙,刘晓,胡顺仁,等.加权稀疏信号重构的近场源定位方法[J].声学技术,2017,36(1):75-80. (LI S, LIU X, HU S R, et al. Near-field source localization based on weighted sparse signal recovery [J]. Technical Acoustics, 2017, 36(1): 75-80.)
  [6] YARDIBI T, LI J, STOICA P, et al. Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares [J]. IEEE Transactions Aerospace Electronica System, 2010, 46(1): 425-443.
  [7] STOICA P, LI J, HE H. Spectral analysis of nonuniformly sampled data: a new approach versus the periodogram [J]. IEEE Transactions on Signal Processing, 2009, 57(3): 843-858.
  [8] STOICA P, BABU P, LI J. New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data [J]. IEEE Transactions on Signal Processing, 2011, 59(1): 35-47.
  [9] STOICA P, BABU P, LI J. SPICE: a sparse covariance-based estimation method for array processing [J]. IEEE Transactions on Signal Processing, 2011, 59(2): 629-638.
  [10] TAN X, ROBERTS W, LI J, et al. Sparse learning via iterative minimization with application to MIMO radar imaging [J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1088-1101.
  [11] STARER D, NEHORAI A. Passive localization of near-field sources by path following [J]. IEEE Transactions on Signal Processing, 1994, 42(3): 677-680.
  [12] STOICA, P, JAKOBSSON A, LI J. Capon, APES and matched-filterbank spectral estimation [J]. Signal Processing, 1998, 66(1): 45-59.
  [13] 赵树杰,赵建勋.信号检测与估计理论[M].北京:清华大学出版社,2005:173-180. (ZHAO S J, ZHAO J X. Signal Detection and Estimation Theory [M]. Beijing: Tsinghua University Press, 2005: 173-180.)
  [14] STOICA P, MOSES R L. Spectral Analysis of Signals [M]. Upper Saddle River, NJ: Pearson/Prenyice Hall, 2005: 265-283.
  [15] SCARGLE J D. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data[J]. Astrophysical Journal, 1982, 263: 835-853.
转载注明来源:https://www.xzbu.com/8/view-14941676.htm