您好, 访客   登录/注册

媒体报道下随机SIQS流行病模型的动态行为研究

来源:用户上传      作者:

  摘 要: 研究了媒体报道干预策略下的随机SIQS流行病模型.构造合适的 Lyapunov 函数,使用It公式和马尔可夫半群理论,证明了基本再生数Rs0可用于控制随机流行病模型的动态行为,即如果再生数Rs0<1,并且在其他条件下,疾病将消亡;如果再生数Rs0>1,并且在其他条件下,疾病是持久性的.结论表明:大的白噪声可以抑制疾病的爆发,这为制定有用的控制策略来调节疾病的动态行为提供有效帮助.最后通过数值模拟验证了这一结果.
  关键词: 媒体报道; 随机SIQS流行病模型; 马尔可夫半群; 基本再生数
  1 Introduction
  The spread of diseases seriously hinders the development of society and economy[1].Hence,it′s necessary to control the spread of infectious diseases.HETHCOTE et al.[2] considers the following classic SIQS epidemic model:
  [1] SHARMA R.Stability analysis of infectious diseases with media coverage and poverty [J].Mathematical Theory and Modeling,2014,4(4):107-113.
  [2] HETHCOTE H,MA Z,LIAO S.Effects of quarantine in six endemic models for infectious diseases [J].Mathematical Bioscienxes,2002,180(1):141-160.
  [3] ZHAO M,ZHAO H.Asymptotic behavior of global positive solution to a stochastic SIR model incorporating media coverage [J].Advances in Difference Equations,2016,40(1):149.
  [4] GUO W,CAI Y,ZHANG Q,et al.Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage [J].Physica A:Statistical Mechanics and Its Applications,2018,492:2220-2236.
  [5] GUO W,ZHANG Q.Dynamic behavior of a SIS epidemic model with media coverage [J].Journal of Henan Normal University(Natural Science Edition),2017,45(3):42-47.
  [6] GUMEL A B,RUAN S,DAY T,et al.Modelling strategies for controlling SARS outbreaks [J].Proceedings of the Royal Society B:Biological Sciences,2004,271:2223-2232.
  [7] PANG Y,HAN Y,LI W.The threshold of a stochastic SIQS epidemic model [J/OL].Advances in Difference Equations,2014,38:320[2018-10-12].https://doi.org/10.1186/1687-1847-2014-320.
  [8] ZHOU Y,ZHANG W,YUAN S.Survival and stationary distribution of a SIR epidemic model with stochastic perturbations [J].Applied Mathematics and Computation,2014,244(10):118-131.
  [9] WEI F,CAI Y,ZHAO Y.The asymptotic behavior of a stochastic SIQS epidemic model with nonlinear incidence [J].Journal of Biomathematics,2016,31(1):109-117.
  [10] WEI F,LIN Q.Extinction and distribution for an SIQS epidemic model with quarantined-adjusted incidence [J].Acta Mathematica Scientia,2017,37A(6):1148-1161.
  [11] CAI Y,KANG Y,BANERJEE M,et al.A stochastic SIRS epidemic model with infectious force under intervention strategies [J].Journal of Differential Equations,2015,259(12):7463-7502.
  [12] LYAPUNOV A M.The general problem of the stability of motion [J].International Journal of Control,1992,55(3):531-534.
  [13] MAO X.Stochastic Differential Equations and Their Applications [M].Chichester:Ellis Horwood,1997.
  [14] RUDNICKI R,PICHR K,TYRAN-KAMIN'SKA M.Markov semigroups and their applications [J].Lecture Notes in Physics,2002,597:215-238.
  [15] STROOCK D W,VARADHAN S R S.On the support of diffusion processes with applications to the strong maximum principle [J].Regents of the University of California,1970,3:333-359.
  [16] HIGHAM D J.An algorithmic introduction to numerical simulation of stochastic differential equations [J].SIAM Review,2001,43(3):525-546.
  (責任编辑:冯珍珍)
转载注明来源:https://www.xzbu.com/1/view-14801536.htm