您好, 访客   登录/注册

芽孢杆菌促进植物生长机制研究进展

来源:用户上传      作者:

  摘要:利用植物-微生物协作提高作物产量是当前农业研究领域的热点。植物根际促生细菌(plant growth promoting rhizobacteria,PGPR)是一种非常重要的土壤细菌,在土壤-植物生态系统中占据重要地位。而在众多PGPR中,芽孢杆菌占植物根际革兰氏阳性细菌总数的95%,是当前研究最为广泛的PGPR之一。结合近年来的研究结果,本文综述了芽孢杆菌几种不同促生(plant growth promoting,PGP)机制,如改善植物根际可利用的营养物质,产生植物激素,诱导植物抗性和抑制病原体等方面的最新研究进展,同时对该领域的研究发展方向进行了展望。
   关键词:植物根际促生细菌;芽孢杆菌;促生机制;植物-微生物协作;产量
   中图分类号: S182  文献标志码: A  文章编号:1002-1302(2020)03-0073-07
   人口数量的持续增加导致人类对作物的需求越来越大[1],而传统的大规模施用化肥和农药,在增加作物产量的同时不可避免地会給生态环境带来严重的破坏[2],这就使得利用植物-有益微生物协作提高作物产量成为当前一个研究热点[3]。土壤微生物在土壤生态系统的各种生命活动中起着重要作用,维持着整个土壤生态系统的稳定[4-5]。其中,在植物根部积累中能够提高土壤肥力,增强植物抗逆性,促进植物生长发育的细菌被称为植物根际促生细菌(plant growth promoting rhizobacteria,PGPR)[6-8]。
  在众多PGPR中,芽孢杆菌(Bacillus)占植物根际革兰氏阳性细菌总数的95%[9],是当前研究较为广泛的PGPR之一,它通过促进难溶性磷溶解、微量元素吸收等方式增加植物根际营养物质的利用率[10],以及产生植物激素供植物利用;此外,还可以通过诱导植物抗性和抑制病原菌来促进植物生长发育[11]。
  大多数土壤含有足够的植物营养素,但它们通常以不溶性形式存在,不能被植物吸收利用[12]。芽孢杆菌可以直接释放吲哚乙酸(IAA)、铁载体、氨等促进植物生长和发育的物质,也可以促进植物获得生长所必需的矿物质(氮、磷、钾等)以促进植物的生长[13-14],或间接通过降低各种病原体对植物生长和发育造成的抑制作用来促进生长[15]。本文将结合当前最新的研究对芽孢杆菌促进植物生长发育的几种机制进行论述(图1和表1)。
  1 直接机制
  1.1 氮固定
  氮是植物生长和发育中最重要的营养元素,但超过80%的N2作为惰性气体存在于大气中不能被植物吸收和利用[15],而生物固氮系统则可以通过固氮微生物中称之为固氮酶的复合酶系统将其还原为含氨复合物进而被植物吸收利用[28-29]。N2固定过程以固氮酶复合物为主,而它们的结构在不同的固氮细菌属中不同[30-33]。根际细菌中的芽孢杆菌属于非共生的固氮细菌,研究发现,大部分芽孢杆菌的生物固氮是通过钼固氮酶来进行的。钼固氮酶复合物具有由nif DK和nif H基因编码的2种组分蛋白质。在固氮的情况下,铁蛋白结合2个分子以获得MgATP并与铁钼酸结合。当2种蛋白质结合时,2个分子的MgATP被水解成2个分子的MgADP,2个分子的Pi和铁蛋白将电子传递给高铁血红素。钼铁蛋白使用这些电子将N2还原为NH3[33]。据报道,从北京植物根际提取的芽孢杆菌中同样发现了nif基因[34]。研究还表明,B. Velezensis菌株对大豆具有促进和结瘤作用[28]。B. pumilus S1r1和B. subtilis UPMB10具有固定N2的能力[35]。此外,许多研究也陆续报道了各种芽孢杆菌(包括B. subtilis、B. pumilus、B. cereus、B. circulans、B. megaterium、B. licheniformis等)均含有固氮酶[36]。近年来的一些研究表明,当芽孢杆菌和其他根际细菌共同接种时,植物中的氮营养成分增加。例如,当与芽孢杆菌和根瘤菌共同接种时,刺激植物生长,结瘤和N2固定的能力更强[37]。
  1.2 磷酸盐溶解
  磷是除氮以外对植物生长发育最重要的营养元素,通常在土壤中以有机和无机形式存在[38]。虽然磷在土壤中含量丰富,但大部分是不溶性的,而植物只能吸收一小部分可溶性磷[7]。据报道,芽孢杆菌是一种非常重要的磷酸盐溶解细菌(phosphate solubilizing bacteria,PSB),能够为植物提供可直接吸收的有效磷[39]。由芽孢杆菌合成释放的低分子量有机酸可促进无机磷在土壤中的溶解。有机酸的羟基和羧基螯合磷酸盐结合的阳离子并最终将磷酸盐转化为可溶形式[40]。不同于无机磷的转化,有机磷的矿化是通过合成不同的磷酸酶来催化磷酸盐的水解来实现的,而这2种溶磷方式可在同一细菌菌株中共存[8]。据报道,芽孢杆菌根际细菌的有机酸已被鉴定和定量,它们在磷酸盐溶解过程中的作用也得到了证实[41]。例如B. circulans、B. coagulans、B. subtilis、B. sircalmous、B. thuringiensis、B. megaterium和B. sircalmous均被认为是一些最有效的磷增溶剂[15,42]。研究表明,用苏云金芽孢杆菌处理花生幼苗,能够改善土壤中难溶性磷酸盐化合物的溶解,提高可溶性磷的浓度,提高作物产量[43]。此外,在缺磷的土壤中接种巨大芽孢杆菌后,辣椒和黄瓜对磷的吸收和利用均增加,并且它们的生长指标均有不同程度的提升[44]。在2019年的一项研究中定量了在鹰嘴豆根部分离的B. subtilis和B. pumilus磷的增溶能力范围为78~87.64 mg[45]。
  1.3 钾溶解
  钾是植物生长所必需的营养元素之一。土壤中的钾可分为水溶性钾和矿物钾,而植物只能吸收水溶性钾,但水溶性钾只占土壤总钾含量的 0.1%~2%[46]。因此,有必要利用土壤中的解钾微生物向缺钾土壤中的植物提供钾。解钾微生物(potassium-solubilizing microorganism)是指能够在土壤或纯培养条件下,将含钾矿物如长石、云母等不能被作物吸收利用的矿物态钾分解产生水溶性钾的微生物。其中B. circulans、B.mucilaginosus和 B.licheniformis是被广泛报道的钾细菌。解钾的基本原理是钾细菌能够破坏钾长石的晶格结构,从而释放其中的钾,为作物提供营养;其中,钾细菌产生有机酸和氨基酸的酸溶作用以及有机酸、氨基酸及荚膜多糖的络合作用是钾长石晶格结构破坏的主要原因。在晶格结构的破坏过程中,荚膜多糖又扮演着重要的角色,它可以与土壤中存在的大量二氧化硅(SiO2)发生络合,导致土壤中SiO2浓度降低,打破矿质结晶过程中暂时的动态平衡,促进矿物质降解,从而释放出被晶格所包围的Si和K等金属离子[47]。辣椒和黄瓜根际的许多芽孢杆菌属均被证明参与钾溶解[48]。此外研究表明,应用钾细菌作为生物肥料,能够有效提高土壤水溶性钾含量。目前,有关钾细菌溶钾机制的研究仍然相对较少,因此,仍需要深入研究。   1.4 生成激素
  芽孢杆菌可以分泌植物激素,如吲哚-3-乙酸、细胞分裂素(CTK)和赤霉素等,它们能够直接影响植物生长发育[49]。研究表明,芽孢杆菌分泌的IAA能够改变植物IAA的内源库,进而影响植物生长、发育、胁迫应答等过程[8,50]。此外,IAA能够在一定程度上增加根的表面积和长度,为植物吸收更多的土壤养分提供保障。据报道,B. subtilis、B. thuringiensis、B. megaterium和B. weihenstephanensis SM3均具有产生IAA的能力[15,51]。此外,研究者对芽孢杆菌产生IAA能力的量化结果表明,B. subtilis AU-2和Bacillus pumilus AU-4 IAA的产量为 20~35.34 μg/mL。对拟南芥植株接种芽孢杆菌能够显著提升植株IAA、CTK和GA的含量,并且植株的含水量、鲜质量和干质量均显著增加,有效地降低了压力对植物的不利影响[52]。以上研究表明,芽孢杆菌可以通过直接生成植物激素来促进植物的生长发育。
  1.5 生成铁载体和氨
  铁是植物维持正常生命活动所必需的微量矿质元素,它主要在好氧环境中以Fe3+的形式存在,并且易于形成不溶性的氢氧化物和羟基氧化物,这是植物和微生物相对难以接触和利用铁的原因[53]。细菌通常通过分泌被称为铁载体的低分子量铁螯合剂来获得铁。铁载体通常是水溶性的,具有较高的铁络合结合常数,可分为细胞外铁载体和细胞内铁载体[54]。在细菌中,细菌膜上铁载体复合物中的铁(Fe3+)被还原成(Fe2+),Fe2+通过连接内膜和外膜的门控机制进一步从铁载体释放到细胞中,在该过程中,铁载体可能被破坏或回收[53,55]。因此,铁限制的情况下,铁载体可以用作增加铁的有效溶剂[56]。铁载体不仅与铁有关,而且与其他环境相关的重金属(如铝、铬、铜、钙、铟、铅和锌)和放射性核素(包括铀和镎)可形成稳定的络合物[57],而这将增加可溶性金属的浓度[53]。细菌分泌的分泌物有助于增加植物对有益金属营养素的摄入,限制病原体获取铁营养[58]。植物通过不同的机制吸收细菌铁载体中的铁,例如铁的螯合和释放,铁载体-铁复合物的直接摄取,或通过配体交换反应[59]。因此,铁载体对促进植物生长和减缓病原胁迫具有重要作用。此外,微生物产生的氨也可以直接或间接地帮助植物。土壤中氨的积累可导致土壤pH值增加,破坏微生物群落平衡,抑制了许多真菌孢子的萌发,从而直接或间接地促进植物生长[45]。大量研究表明,芽孢杆菌具有分泌铁载体和氨的能力。B. subtilis PSB能够促进不溶性锌和铅的溶解,并且其对铬具有高度抗性,具有还原高价铬的能力。此外无论是否存在铬,B. subtilis PSB都可以产生铁载体和氨[6]。类似的,研究发现芽孢杆菌可以通过减少铬污染土壤的毒性作用来刺激植物生长,表现为将六价铬还原为三价铬,从而有效降低铬对植物的损害,显著提高植物的新鲜生物量[60]。此外,一些研究表明,真菌和细菌可以复合大量的金属阳离子,而具有这种特性的Bacillus weihenstephanensis SM3可以通过共享金屬负载来降低金属的植物毒性作用,因为它具有生物吸附和生物积累能力[51]。
  1.6 1-氨基环丙烷-1-羧酸酯(ACC)脱氨酶
  尽管乙烯在植物的生长和发育中起着重要作用,但当乙烯浓度过高时,可能对植物有害,因为高浓度的乙烯会引起落叶和其他导致植物性能下降的细胞过程[7,61]。在胁迫条件下,植物内源乙烯水平显著增加,从而抑制植物的生长。研究表明,1-氨基环丙烷-1-羧酸酯(ACC)脱氨酶可以通过降低乙烯水平来减少干旱胁迫损伤,促进植物生长和发育[62]。此外,ACC脱氨酶可以缓解病原微生物(病毒、细菌和真菌等)以及重金属、辐射、昆虫捕食、高盐浓度、极端温度、高光强度等对植物的胁迫。芽孢杆菌ACC脱氨酶能够分解ACC产生2-氧代丁酸酯和NH3,从而降低乙烯含量[63]。据报道,当植物接种具有ACC脱氨酶活性的芽孢杆菌后,植株根长和地上部分显著增长,并且对N、P、K等各种营养素的吸收能力也明显增加[62-64]。研究表明,B. subtilis AU-2和B. Pumilus AU-4均具有ACC脱氧酶活性,并且它们对ACC的降解能力为600~1 700 nmol α-KA/(mg Pr·h)[45]。据报道,油菜在接种DUC1、DUC2和DUC3这3种环状芽孢杆菌后,其根显著伸长,进一步研究发现,这3种芽孢杆菌均具有ACC脱氨酶活性[7]。以上研究表明,具有ACC脱氨酶活性的芽孢杆菌可以有效促进植物的生长。
  2 间接机制
  2.1 诱导植物的系统抗性
  一些根际细菌与植物根的相互作用可激发植物对一些致病细菌、真菌和病毒的抗性,这种现象称为诱导系统抗性(induced systemic resistance,ISR)[65]。ISR包括植物内的茉莉酸和乙烯信号传导,而它们将刺激宿主植物对多种植物病原体的防御反应[66]。研究表明,芽孢杆菌可诱导植物对各种细菌和真菌病原体产生广谱抗性[67]。从英国阿里格尔地区(Aligarh)附近的不同根际土壤和植物结节中共分离出72种细菌分离物,其中,芽孢杆菌被证明对Aspergillus、Fusarium和Rhizoctonia的一种或多种真菌具有广谱抗性[68]。在生长室条件,对AP69(Bacillus altitudinis)、AP197(B. velezensis)、AP199(B. velezensis)和AP298(B. velezensis)4个PGPR系的试验结果表明,它们对Xanthomonas campestris和Rhizoctonia solani均具有显著拮抗作用。进一步分析发现,这4种 PGPR系及其混合物对多种植物病害具有生物防治作用,并能促进植物生长[69]。研究表明,不同芽孢杆菌引起的ISR可以抵抗不同的病原体[70]。值得一提的是,即使在胁迫条件下,接种芽孢杆菌的植物体内的ISR也高于非应激条件下的植物,从而使植物得到保护[12]。   2.2 产生抗生素
  细菌可以分泌对其他微生物代谢有害的化合物。研究表明,属于革兰氏阳性细菌的多黏芽孢杆菌能够促进植物生长,并产生各种抗生素[71]。从韩国大麦根部分离的P. polymyxa E681对大麦、黄瓜、辣椒、芝麻和拟南芥均具有显著的生长促进作用,并且可以产生抗菌化合物以保护植物免受病原真菌、卵菌和细菌的侵害。进一步分析发现,至少有6个抗生素生物合成基因簇,其中多黏菌素(pmx)被认为在抗革兰氏阴性耐药细菌方面具有卓越作用[72]。据报道,B. subtilis能够产生多种抗生素,包括枯草杆菌蛋白酶、杆菌素、分枝杆菌素和羊毛硫抗生素,它们对革兰氏阳性菌均具有很强的抗性[73-75]。B. thuringiensis(Bt)是当前农业和医药领域中应对不同类型害虫最成功的微生物杀虫剂。Bt毒素基因能够增强转基因作物对害虫的抗性,同时对线虫、蚜虫、螨虫以及真菌等病原体的毒性具有拮抗作用[76]。
  研究表明,芽孢杆菌CBSAL02菌株能够显著降低Meloidogyne javanica 和Ditylenchus spp.的活性,表明它可以有效地控制病害[77]。此外,研究还表明,每个芽孢杆菌抗生素家族均具有特异的抗菌活性[73]。以上结果表明,芽孢杆菌能够通过产生抗生素来帮助植物对抗病害,从而促进植物的生长。
  2.3 产生挥发性有机化合物
  根际细菌释放的挥发性有机化合物(volatile organic compounds,VOCs)可促进植物生长、抵御真菌病原体,是细菌刺激植物生长的重要机制之一。VOCs通常是低分子量的,包括醇、醛、酮、烃、酸和萜烯等物质,它们在常温常压下易于蒸发和扩散,可以通过大气、多孔土壤和液体从产生部位转移,使其成为理想的信息化学物质,能够介导种间相互作用[78]。VOCs能够赋予植物对干旱和重金属等非生物胁迫的系统耐受性[79]。研究表明,VOCs通过ISR与植物防御机制密切相关[80]。B. amyloliquefaciens IN937a能够通过其排放的VOCs刺激ISR的发生。从IN937a 的VOCs和衍生物中,研究者分离到一种昆虫性信息素的组分(3-戊醇)。进一步分析发现,3-戊醇处理能够显著降低由柑橘溃疡病菌和黄瓜花叶病毒引起的病害[81]。类似的,研究者发现,芽孢杆菌Bacillus JC03菌株产生的VOCs能显著促进拟南芥和番茄的生物量积累[82]。
  3 展望
  芽孢杆菌通过不同机制(包括营养物的溶解和激素生成,产生各种可用于管理植物病虫害的化合物等)促进植物生长,是一种高效的、环境友好的重要农业措施。随着人们对可持续农业、环境保护和粮食安全的日益重视,开发有益的土壤微生物群成为当前农业研究领域的焦点。
  虽然有关芽孢杆菌促生方面的研究已取得一定进展,但是在某些方面仍需加强:(1)尽管有关芽孢杆菌一些促生机制在分子层面的研究已经取得了一定的成果,但是仍然不够全面,因此,通过基因工程技术对其促生机制展开全面深入的研究将有助于更加详尽准确地阐明其促生机制;(2)当前有关芽孢杆菌的研究结果大多是在稳定可控条件下表现良好,而在自然条件下表现却不尽人意。因此,如何实现细菌在不同環境条件下稳定表现也是亟待解决的问题之一;(3)一些在体外表现出良好PGP活性的芽孢杆菌在体内试验中却不能表现出显著的生防效果,这就需要对不同芽孢杆菌菌株的功能和适用性进行更多研究,从而为其在不同的农业生态条件下的应用奠定基础;(4)值得一提的是,使用不同PGPR结合的混合菌剂接种植物,可以获得更好的促生效果,因此,阐明其中机制可为今后制备更加高效的促生菌肥提供支持。相信随着研究的不断深入,作为一种非常重要的PGPR,芽孢杆菌将在未来可持续农业发展过程中扮演越来越重要的角色。
  参考文献:
  [1]Aloo B N,Makumba B A,Mbega E R. The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability[J]. Microbiological Research,2019,219:26-39.
  [2]Yu Y L,Chu X Q,Pang G H,et al. Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil[J]. Journal of Environmental Sciences,2009,21(2):179-185.
  [3]Naqqash T,Hameed S,Imran A,et al. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria[J]. Frontiers in Plant Science,2016,7(583):144.
  [4]Chandler D,Davidson G,Grant W P,et al. Microbial biopesticides for integrated crop management:an assessment of environmental and regulatory sustainability[J]. Trends in Food Science & Technology,2008,19(5):0-283.
  [5]Ahemad M,Khan M S. Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis[J]. Bulletin of Environmental Contamination and Toxicology,2009,82(6):761-766.   [6]Khan M S,Zaidi A,Wani P A. Role of phosphate-solubilizing microorganisms in sustainable agriculture-A review[J]. Agronomy for Sustainable Development,2007,27(1):29-43.
  [7]Bhattacharyya P N,Jha D K. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology & Biotechnology,2012,28(4):1327-1350.
  [8]Glick B R. Plant growth-promoting bacteria:mechanisms and applications[J]. Scientifica,2012:1-15.
  [9]Prashar P,Kapoor N,Sachdeva S. Rhizosphere:its structure,bacterial diversity and significance[J]. Reviews in Environmental Science and Biotechnology,2014,13(1):63-77.
  [10]Compant S,Duffy B,Nowak J,et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles,mechanisms of action,and future prospects[J]. Applied and Environmental Microbiology,2005,71(9):4951-4959.
  [11]Zhou C,Guo J,Zhu L,et al. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms[J]. Plant Physiology and Biochemistry,2016,105(8):162-173.
  [12]Shafi J,Tian H,Ji M. Bacillus species as versatile weapons for plant pathogens:a review[J]. Biotechnology & Biotechnological Equipment,2017,31(3):446-459.
  [13]Wani P A,Khan M S. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils[J]. Food and Chemical Toxicology,2010,48(11):3262-3267.
  [14]Kuan K B,Othman R,Rahim K A. Plant Growth-Promoting rhizobacteria inoculation to enhance vegetative growth,nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions[J]. PLoS One,2016,11(3):e0152478.
  [15]Khan N,Bano A,Rahman M A,et al. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs[J]. Scientific Reports,2019,9(1):2097.
  [16]Banerjee A,Biswas J K,Pant D,et al. Enteric bacteria from the earthworm (Metaphire posthuma) promote plant growth and remediate toxic trace elements[J]. Journal of Environmental Management,2019,250:109530.
  [17]Wang C,Liu Z,Huang Y,et al. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.)[J]. Environmental Toxicology and Pharmacology,2019,72:103265.
  [18]Jochum M D,McWilliams K L,Borrego E J,et al. Bioprospecting plant Growth-Promoting rhizobacteria that mitigate drought stress in grasses[J]. Frontiers in Microbiology,2019,10(9):2106.   [19]Khan N,Bano A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions[J]. PLoS One,2019,14(9):e0222302.
  [20]Amna,Din B U,Sarfraz S,et al. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress[J]. Ecotoxicology and Environmental Safety,2019,183:109466.
  [21]Irshad S,Xie Z,Wang J,et al. Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata[J]. Journal of Hazardous Materials,2020,381:120903.
  [22]Borah A,Das R,Mazumdar R,et al. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics[J]. Journal of Applied Microbiology,2019,127(3):825-844.
  [23]Mondal M,Biswas J K,Tsang Y F,et al. A wastewater bacterium Bacillus sp. KUJM2 acts as an agent for remediation of potentially toxic elements and promoter of plant (Lens culinaris) growth[J]. Chemosphere,2019,232:439-452.
  [24]Ghosh D,Gupta A,Mohapatra S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana[J]. World Journal of Microbiology & Biotechnology,2019,35(6):90.
  [25]Yang W. Components of rhizospheric bacterial communities of barley and their potential for plant growth promotion and biocontrol of Fusarium wilt of watermelon[J]. Brazilian Journal of Microbiology,2019,50(3):749-757.
  [26]Tahir M,Ahmad I,Shahid M,et al. Regulation of antioxidant production,ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains[J]. Ecotoxicology and Environmental Safety,2019,178:33-42.
  [27]Ansari F A,Ahmad I. Fluorescent pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes[J]. Scientific Reports,2019,9(1):4547.
  [28]Hassan M K,Mcinroy J A,Jones J,et al. Pectin-Rich amendment enhances soybean growth promotion and nodulation mediated by bacillus velezensis strains[J]. Plants (Basel,Switzerland),2019,8(5):.
  [29]Hashem A,Tabassum B,Fathi Abd Allah E. Bacillus subtilis:A plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences,2019,26(6):1291-1297.   [30]Castellano-Hinojosa A,Pérez-Tapia V,Bedmar E J,et al. Purple corn-associated rhizobacteria with potential for plant growth promotion[J]. Journal of Applied Microbiology,2018,124(5):1254-1264.
  [31]Weselowski B,Nathoo N,Eastman A W,et al. Isolation,identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide,biofertilization,biomass degradation and biofuel production[J]. BMC Microbiology,2016,16(1):244.
  [32]Seefeldt L C,Hoffman B M,Dean D R. Electron transfer in nitrogenase catalysis[J]. Current Opinion in Chemical Biology,2012,16(1/2):19-25.
  [33]Kim J,Rees D C. Nitrogenase and biological nitrogen fixation[J]. Biochemistry,1994,33(2):389-397.
  [34]Ding Y,Wang J,Liu Y,et al. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region[J]. Journal of Applied Microbiology,2005,99(5):1271-1281.
  [35]Gouda S,Kerry R G,Das G,et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research,2018,206:131-140.
  [36]Xie G H,Su B L,Cui Z J. Isolation and identification of N2-fixing strains of Bacillus in rice rhizosphere of the Yangtze River Valley [J]. Acta Microbiologica Sinica,1999,38(6):480-483.
  [37]Jacqueline Gomez-Godinez L,Lizbeth Fernandez-Valverde S,Martinez Romero J C,et al. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs[J]. Systematic and Applied Microbiology,2019,42(4):517-525.
  [38]Khan A G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation[J]. Journal of Trace Elements in Medicine and Biology,2005,18(4):355-364.
  [39]Bjelic D,Marinkovic J,Tintor B A. Antifungal and plant growth promoting activities of indigenous rhizobacteria isolated from maize (Zea mays L.) rhizosphere[J]. Communications in Soil Science and Plant Analysis,2018,49(1):88-98.
  [40]Bhattacharyya P,Bhattacharyya L H,Goswami M P. Perspective of benefi cial microbes in agriculture under changing climatic scenario:a review[J]. Journal of Phytology,2016,8:26-41.
  [41]Marcino M L,Soares C R F S,Oliveira S M,et al. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils[J]. Plant & Soil,2012,357(1/20:289-307.
  [42]Govindasamy V,Senthilkumar M,Magheshwaran V,et al. Bacillus and Paenibacillus spp.:Potential PGPR for sustainable agriculture[J]. Plant Growth and Health Promoting bacteria,2010,18:333-364.   [43]Wang T,Kong L Y,Jiao J G,et al. Effects of phosphate-solubilizing bacteria B1(Bacillus thuringiensis)on Peanuts in pot experiment[J]. Soils,2014,46(2):313-318.
  [44]Han H S. Supanjani,lee K D. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber[J]. Plant Soil and Environment,2006,52(3):130-136.
  [45]Pandey S,Gupta S,Ramawat N. Unravelling the potential of microbes isolated from rhizospheric soil of chickpea (Cicer arietinum) as plant growth promoter[J]. 3 Biotech,2019,9(7):277.
  [46]Zhang H M,Xu M G,Zhang W J,et al. Factors affecting potassium fixation in seven soils under 15-year long-term fertilization[J]. Chinese Science Bulletin,2009,54(10):1773-1780.
  [47]張爱民,李乃康,赵钢勇,等. 土壤中解磷、解钾微生物研究进展[J]. 河北大学学报(自然科学版),2015,35(4):442-448.
  [48]Rashid M I,Mujawar L H,Shahzad T,et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils[J]. Microbiological Research,2016,183:26-41.
  [49]García F P,Menéndez E,Rivas R. Role of bacterial biofertilizers in agriculture and forestry[J]. AIMS Bioengineering,2015,2(3):183-205.
  [50]Spaepen S,Vanderleyden J,Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiology Reviews,2007,31(4):425-448.
  [51]Fonseca E S,Peixoto R S,Rosado A S,et al. Correction to:the microbiome of eucalyptus Roots under different management conditions and its potential for biological nitrogen fixation[J]. Microbial Ecology,2018,75(1):183-191.
  [52]Ghosh D,Gupta A,Mohapatra S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress[J]. Symbiosis,2019,77(3):265-278.
  [53]Rajkumar M,Ae N,Prasad M N. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology,2010,28(3):142-149.
  [54]Khan M S,Zaidi A,Wani P A,et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils[J]. Environmental Chemistry Letters,2009,7(1):1-19.
  [55]Neilands J B. Siderophores:structure and function of microbial Iron transport compounds[J]. The Journal of Biological Chemistry,1995,270(45):26723-26726.
  [56]Indiragandhi P,Anandham R,Madhaiyan M,et al. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera:Plutellidae)[J]. Current Microbiology,2008,56(4):327-333.   [57]Neubauer U,Furrer G,Kayser A,et al. Siderophores,NTA,and citrate:potential soil amendments to enhance heavy metal mobility in phytoremediation[J]. International Journal of Phytoremediation,2000,2(4):353-368.
  [58]Chaiharn M,Chunhaleuchanon S,Lumyong S. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand[J]. World Journal of Microbiology & Biotechnology,2009,25(11):1919-1928.
  [59]Schmidt W. Mechanisms and regulation of reduction-based iron uptake in plants[J]. New Phytologist,1999,141(1):1-26.
  [60]Faisal M,Hasnain S. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants[J]. Letters in Applied Microbiology,2006,43(4):461-466.
  [61]Arshad M,Saleem M,Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation[J]. Trends in Biotechnology,2007,25(8):356-362.
  [62]Zahir Z A,Munir A,Asghar H N,et al. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas(Pisum sativum)under drought conditions[J]. Journal of Microbiology&Biotechnology,2008,18(5):958.
  [63]Saleem M,Arshad M,Hussain S,et al. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture[J]. Journal of Industrial Microbiology & Biotechnology,2007,34(10):635-648.
  [64]Nadeem S M,Zahir Z A,Naveed M,et al. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields[J]. Canadian Journal of Microbiology,2009,55(11):1302-1309.
  [65]Fan B,Wang C,Song X,et al. Bacillus velezensis FZB42 in 2018:the gram positive model strain for plant growth promotion and Biocontrol[J]. Frontiers in Microbiology,2018,9(10):2491.
  [66]Wu L,Huang Z,Li X,et al. Stomatal closure and SA-,JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by phytophthora nicotianae in nicotiana benthamiana[J]. Frontiers in Microbiology,2018,9:847.
  [67]Kloepper J W,Ryu C M,Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp.[J]. Phytopathology,2004,94(11):1259-1266.
  [68]Ahmad F,Ahmad I,Khan M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities[J]. Microbiological Research,2008,163(2):173-181.
  [69]Liu K,Mcinroy J A,Hu C H,et al. Mixtures of Plant-Growth-Promoting rhizobacteria enhance biological control of multiple plant diseases and Plant-Growth promotion in the presence of pathogens[J]. Plant Disease,2018,102(1):67-72.   [70]Tunsagool P,Leelasuphakul W,Jaresitthikunchai J,et al. Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A,fengycin,and surfactin on elicitation of defensive systems in Mandarin fruit during stress[J]. PLoS One,2019,14(5):e0217202.
  [71]Cheffi M,Bouket A C,Alenezi F N,et al. Olea europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes[J]. Microorganisms,2019,7(9):314.
  [72]Jeong H,Choi S K,Ryu C M,et al. Chronicle of a soil bacterium:Paenibacillus polymyxa E681 as a tiny Guardian of plant and human health[J]. Frontiers in Microbiology,2019,10(3):467.
  [73]Cawoy H,Bettiol W,Fickers P,et al. Bacillus-based biological control of plant diseases[J]. Pesticides in the Modern World-Pesticides Use and Management,2011:273-302.
  [74]Leclère V,Béchet M,Adam A,et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organisms antagonistic and biocontrol activities[J]. Applied and Environmental Microbiology,2005,71(8):4577-4584.
  [75]Stein T. Bacillus subtilis antibiotics:structures,syntheses and specific functions[J]. Molecular Microbiology,2005,56(4):845-857.
  [76]Jouzani G S,Valijanian E,Sharafi R. Bacillus thuringiensis:a successful insecticide with new environmental features and tidings[J]. Applied Microbiology and Biotechnology,2017,101(7):2691-2711.
  [77]Turatto M F,Dourado F D,Zilli J E,et al. Control potential of Meloidogyne javanica and Ditylenchus spp. using fluorescent Pseudomonas and Bacillus spp.[J]. Brazilian Journal of Microbiology,2017,49(1):54-58.
  [78]del Rosario-Cappellari L,Chiappero J,Banchio E. Invisible signals from the underground:A practical method to investigate the effect of microbial volatile organic compounds emitted by rhizobacteria on plant growth[J]. Biochemistry and Molecular Biology Education,2019,47(4):388-393.
  [79]Farag M A,Zhang H,Ryu C M. Dynamic chemical communication between plants and bacteria through airborne signals:induced resistance by bacterial volatiles[J]. Journal of Chemical Ecology,2013,39(7):1007-1018.
  [80]Park H B,Lee B,Kloepper J W,et al. One shot-two pathogens blocked:exposure of Arabidopsis to hexadecane,a long chain volatile organic compound,confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae[J]. Plant Signaling & Behavior,2013,8(7):e24619.
  [81]Choi H K,Song G C,Yi H S,et al. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper[J]. Journal of Chemical Ecology,2014,40(8):882-892.
  [82]Lee S,Yap M,Behringer G,et al. Volatile organic compounds emitted by Trichoderma species mediate plant growth[J]. Fungal Biology and Biotechnology,2016,3(1):7.
转载注明来源:https://www.xzbu.com/1/view-15154273.htm