您好, 访客   登录/注册

线粒体自噬对阻塞性睡眠呼吸暂停综合征大鼠海马神经元的影响

来源:用户上传      作者:

  摘要:目的  探討线粒体自噬对阻塞性睡眠呼吸暂停综合征(OSAS)大鼠海马神经元的影响。方法  将24只成年雄性SD大鼠随机分为对照组和实验组,对照组6只,不进行OSAS造模,正常条件饲养;实验组18只,进行OSAS模型制备,造模后按继续饲养2、4、6周分为2周组、4周组和6周组,每组6只。比较实验组造模前后血氧饱和度,Western Blot检测大鼠海马神经细胞线粒体自噬相关蛋白LC3(LC3Ⅱ/LC3Ⅰ)、p62、PINK1及Parkin的表达;透射电子显微镜观察大鼠海马神经细胞线粒体的变化情况,TUNEL检测法观察大鼠海马CA1区神经细胞的变化。结果  实验组大鼠造模后反应慵懒,警觉性差,进食减少,进食量不规律,偶有呼吸节律不规则等,且血氧饱和度低于造模前,差异有统计学意义(P<0.05);2、4、6周组大鼠海马 CA1区LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表达均高于对照组,p62表达低于对照组,且2、4、6周组LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表达呈依次升高,p62 表达依次降低,差异均有统计学意义(P<0.05)。2、4、6周组大鼠海马 CA1区线粒体自噬小体及凋亡细胞数均多于对照组,且2、4、6周组呈依次升高,差异均有统计学意义(P<0.05)。结论  OSAS大鼠海马神经细胞发生线粒体自噬可能会加重OSAS大鼠海马神经元的凋亡。
  关键词:阻塞性睡眠呼吸暂停综合征;线粒体自噬;海马神经元
  中图分类号:R742;R741.02                            文献标识码:A                            DOI:10.3969/j.issn.1006-1959.2020.11.022
  文章编号:1006-1959(2020)11-0072-04
  Abstract:Objective  To investigate the effect of mitochondrial autophagy on hippocampal neurons in rats with obstructive sleep apnea syndrome (OSAS).Methods  24 adult male SD rats were randomly divided into a control group and an experimental group, with 6 rats in the control group without OSAS modeling and fed under normal conditions;In the experimental group, 18 animals were prepared for the OSAS model. After the model was established, they were divided into 2 week groups, 4 week groups, and 6 week groups according to 2, 4, and 6 weeks of continuous feeding. The blood oxygen saturation of the experimental group before and after modeling was compared. Western Blot was used to detect the expression of mitochondrial autophagy-related proteins LC3 (LC3Ⅱ/LC3Ⅰ), p62, PINK1 and Parkin in rat hippocampus neurons. Changes, TUNEL detection method to observe the changes of neurons in hippocampal CA1 area of rats.Results  The rats in the experimental group had lazy reaction, poor alertness, decreased food intake, irregular food intake, and occasional irregular breathing rhythm, etc., and the blood oxygen saturation was lower than before the model, the difference was statistically significant (P<0.05 ); The protein expressions of LC3 (LC3Ⅱ/LC3Ⅰ), PINK1 and Parkin in hippocampal CA1 area of rats in the 2, 4, and 6-week groups were higher than that in the control group, and the expression of p62 was lower than that in the control group, and LC3 in the 2, 4, and 6-week groups LC3Ⅱ/LC3Ⅰ), PINK1 and Parkin protein expression increased sequentially, p62 expression decreased sequentially, the differences were statistically significant (P<0.05). The number of mitochondrial autophagosomes and apoptotic cells in the hippocampal CA1 area of rats in the 2, 4 and 6 week groups were more than those in the control group, and the 2,4, and 6 week groups were sequentially increased,the differences were statistically significant (P<0.05).Conclusion  The occurrence of mitochondrial autophagy in hippocampal neurons of OSAS rats may increase the apoptosis of hippocampal neurons in OSAS rats.   Key words:Obstructive sleep apnea syndrome;Mitochondrial autophagy;Hippocampal neurons
  阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)是一种睡眠障碍性性疾病,患者易出现高血压、心脏病、认知功能障碍等并发症,尤以认知障碍为著[1,2]。有研究显示,缺氧能诱发细胞产生线粒体自噬[3],而慢性间歇性缺氧是OSAS最主要的病理生理机制,同时大脑海马对缺氧高度敏感[4],目前国内外关于线粒体自噬与OSAS大鼠海马神经细胞的相关性研究较少。故本研究拟检测OSAS大鼠海马神经细胞线粒体自噬相关蛋白的表达,观察大鼠海马神经细胞线粒体以及海马神经元的变化情况,探讨线粒体自噬对OSAS大鼠海马神经元的影响,报道如下。
  1材料与方法
  1.1实验动物  选择3月龄SPF级雄性SD大鼠24只[昆明医科大学实验动物学部,SCXK(滇)K2015-0002)],颗粒饲料喂养,自由饮水。本实验已获得昆明医科大学实验动物伦理委员会批准。将24只SD大鼠按照随机数字表法分为对照组(6只)和实验组(18只),实验组通过咽腔注射透明质酸钠凝胶的方法进行OSAS造模,造模成功后按继续饲养2周、4周和6周的时长分为2周组、4周组和6周组,每组6只;对照组6只不进行造模,正常条件下饲养。
  1.2仪器与试药  玻璃酸透明质酸钠凝胶(上海其胜生物制剂公司,批号:3640336);β-actin(abmart,批号:P30002);LC3、p62、Pink1、Parkin抗体(CST,批号:18725-1-AP、18420-1-AP、A11435、14060-1-AP);多参数神经监护仪(上海诺诚医疗器械公司,NTS-3000A);光学显微镜(Nikon,ECLIPSE Ci-L);透射电子显微镜(JEOL,JEM-1011)。
  1.3 OSAS大鼠造模  参照周赵德等[5]研究,造模前,用多参数神经监护仪监测大鼠血氧饱和度,腹腔麻醉后,于大鼠舌根、咽腭弓、舌腭弓处,多点注射透明质酸钠凝胶;造模后,继续观察4周。造模成功的标准:造模后大鼠反应慢,进食减少,偶有呼吸不规则;对比造模前后血氧饱和度,差异有统计学意义可判定造模成功。
  1.4实验取材  分别于2、4、6周时处死大鼠。每组3只新鲜取材,脱颈处死消毒后,暴露并剔除颅骨,取脑后在冰面上快速分离出海马组织,一半置于EP管中放入-80℃冰箱中,以备进行Western Blot检测,一半置于2.5%戊二醛中,用锡箔纸包裹避光后放入4℃冰箱中,以备进行透射电子显微镜观察。另3只用4%的多聚甲醛灌注取材后用于TUNEL染色。
  1.5 Western Blot检测  将海马组织修剪,冰浴下匀浆、静置裂解20 min,12000 r/min转速在4 ℃下离心10 min后收集上清液;经蛋白浓度测定(按BCA试剂盒说明书操作),然后灌胶与上样,进行SDS-PAGE电泳,将电泳分离的蛋白转移到PVDF膜上,用湿转膜法转膜,然后免疫反应、化学发光、显影、定影后采集图像。
  1.6透射电子显微镜观察  将2.5%戊二醛4 ℃固定的样品,反复冲洗,乙醇脱水后包埋,固化后UltracutE超薄切片机超薄切片,用醋酸双氧铀硝酸铅染色后上机测试。TEM透射电子显微镜观察、采集图像。
  1.7 TUNEL检测  将灌注取材的海马组织石蜡包埋,切片后脱蜡、脱水,反复浸洗及固定后加TUNEL检测液,苏木素复染后冲洗,酒精脱水及二甲苯透明后用中性树脂进行封片;在光学显微镜下采集图片。
  1.8统计学方法  所有数据使用SPSS 24.0软件分析包进行分析,计量资料用(x±s)表示,其中血氧饱和度数据用自身配对设计t检验,各组间比较采用单因素方差分析,进一步两两比较采用q检验;以P<0.05表示差异有统计学意义。
  2结果
  2.1 OSAS大鼠造模结果  造模后大鼠反应慵懒,警觉性差,进食减少,进食量不规律,偶有呼吸节律不规则等;且造模后最低血氧饱和度和平均血氧饱和度均低于造模前,差異均有统计学意义(P<0.05),见表1。
  2.2各组大鼠海马CA1区线粒体自噬相关蛋白表达比较  2周组、4周组和6周组大鼠海马 CA1区LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表达均高于对照组,p62表达均低于对照组,且2周组、4周组和6周组间两两比较显示,造模后饲养时间越长,LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表达越高,p62 表达越低,差异均有统计学意义(P<0.050.05),见图1、表2。
  2.3透射电子显微镜观察结果比较  2周组、4周组和6周组大鼠海马CA1区线粒体自噬小体数量均多于对照组,且2周组、4周组和6周组间两两比较发现,造模后饲养时间的越长线粒体自噬小体数量越多,见图2。
  2.4各组大鼠海马CA1区TUNEL检测结果比较    2周组、4周组和6周组大鼠海马 CA1区出现神经细胞凋亡,凋亡细胞均多于对照组,且2周组、4周组和6周组间两两比较发现,随着造模后饲养时间越长的凋亡细胞数越多,差异均有统计学意义(P<0.05),见图3、表3。
  3讨论
  慢性间歇性缺氧能损伤海马神经[6],而海马与大脑认知功能有关[7]。本课题组前期研究[5]证实,咽腔注射透明质酸钠凝胶的方法可制备OSAS大鼠模型,且OSAS大鼠认知损害与海马神经元凋亡有关。本研究参照同样的方法造模后,发现大鼠反应变慢,进食减少,偶有呼吸不规则,且血氧饱和度下降,这说明造模成功;同时,用TUNEL检测法发现OSAS大鼠海马CA1区神经细胞出现凋亡,且凋亡细胞数量随着继续饲养时间的延长增多,这与前期研究结果存在一致性。   另外,线粒体自噬是细胞自身选择性的清除受损或功能障碍线粒体的过程,对细胞的自我修护至关重要。在线粒体自噬的过程中,微管相关蛋白轻链3(LC3)及LC3Ⅱ/ LC3Ⅰ的蛋白水平可以表达其自噬活性,p62与自噬活性成反比[8,9]。PINK1-Parkin是线粒体自噬主要的分子机制[10,11],有研究指出[12],缺氧能诱导细胞线粒体自噬。本研究通过检测上述线粒体自噬相关蛋白发现,OSAS大鼠海马CA1区LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin的蛋白表达升高,p62 表达下降,这说明OSAS大鼠海马神经细胞自噬活性增加,自噬体生成增多,且透射电镜下观察OSAS大鼠海马神经元可见线粒体自噬小体形成;说明OSAS大鼠海马神经元可出现线粒体自噬,与缺氧诱导细胞产生线粒体自噬存在一致性。
  另外,缺氧诱导细胞产生线粒体自噬的同时,可产生大量的活性氧,这可能损伤线粒体网络[13],而神经细胞突触的部分能量来源于此[14],进而可能损伤神经细胞。本研究显示,造模后继续饲养时间越长,LC3(LC3Ⅱ/LC3Ⅰ)、PINK1及Parkin表达越高,p62 表达越低;OSAS大鼠海马神经元线粒体自噬体及凋亡细胞数量也越多,这表明线粒体自噬程度与OSAS大鼠海马神经元凋亡程度成正比,且可能损伤海马神经元,这都可能与造模后随着饲养时间的延长,缺氧程度越重引起的活性氧过度积累有关。此外,已有研究证实,人体内细胞线粒体损伤可在缺氧等条件下发生[8],说明缺氧可以诱导产生线粒体自噬的同时,也可以导致线粒体损伤。而线粒体自噬异常(过度自噬或缺失)会导致神经细胞凋亡,损害神经系统[15]。因此,本研究中OSAS大鼠海马神经元线粒体自噬小体的增多存在线粒体损伤或过度自噬的可能,而线粒体自噬也被称为自噬-溶酶体途径[16],自噬体的明显增多也有可能是损害了自噬-溶酶体途径。故OSAS大鼠海马神经细胞产生线粒体自噬,可能加重其海马神经元凋亡,但是否存在线粒体自噬异常尚且无法准确评判。目前,有多种自噬机制及自噬相关蛋白的研究相继报导[17,18],而本研究检测指标有限,存在些许不足,但也证实了OSAS大鼠可能存在认知障碍,而检测线粒体自噬异常与否有待进一步研究。
  综上所述,OSAS大鼠海马神经细胞发生线粒体自噬可能会加重OSAS大鼠海马神经元的凋亡,该过程可能会影响大鼠认知功能。
  参考文献:
  [1]Lai S,Mordenti M,Mangiulli M,et al.Resistant hypertension and obstructive sleep apnea syndrome in therapy with continuous positive airway pressure:evaluation of blood pressure,cardiovascular risk markers and exercise tolerance[J].Eur Rev Med Pharmacol Sci,2019,23(21):9612-9624.
  [2]Sener YZ,Oksul M,Akkaya F.Effects of obstructive sleep apnea and atrial fibrillation on blood pressure variability[J].Anatol J Cardiol,2019,22(6):338.
  [3]Anzell AR,Maizy R,Przyklenk K,et al.Mitochondrial Quality Control and Disease:Insights into Ischemia-Reperfusion Injury[J].Mol Neurobiol,2018,55(3):2547-2564.
  [4]Qaid E,Zakaria R,Sulaiman SF,et al.Insight into potential mechanisms of hypobaric hypoxia-induced learning and memory deficit-lessons from rat studies[J].Hum Exp Toxicol,2017,6(3):1315-1325.
  [5]周赵德,容偉,李春艳.阻塞性睡眠呼吸暂停综合征致大鼠认知障碍及其机制研究[J].中华老年心脑血管病杂志,2019,21(9):976-980.
  [6]Gao X,Wu S,Dong Y,et al.Role of the endogenous cannabinoid receptor 1 in brain injury induced by chronic intermittent hypoxia in rats[J].International Journal of Neuroscience,2018,128(9):797-804.
  [7]Wang B,Xu X,Liang G,et al.Correlative study of the metabolic disorder of hippocampus and cerebral cortex and cognitive impairment in moderate to severe OSAHS patients[J].Lin Chung Er,2015,29(7):607-611.
  [8]Springer MZ,Macleod KF.In Brief:Mitophagy:mechanisms and role in human disease[J].J Pathol,2016,240(3):253-255.
  [9]Kirkin V.History of the Selective Autophagy Research:How Did It Begin and Where Does It Stand Today[J].J Mol Biol,2020,432(1):3-27.   [10]Wei L,Wang J,Chen A,et al.Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells[J].Int J Nanomedicine,2017,12(3):1891-1903.
  [11]Evans CS,Holzbaur ELF.Quality Control in Neurons:Mitophagy and Other Selective Autophagy Mechanisms[J].J Mol Biol,2020,432(1):240-260.
  [12]Lemasters JJ.Selective mitochondrial autophagy,or mitophagy,as a targeted defense against oxidative stress,mitochondrial dysfunction,and aging[J].Rejuvenation Res,2005,8(1):3-5.
  [13]Liochev SI.Reactive oxygen species and the free radical theory of aging[J].Free Radic Biol Med,2013,60(10):1-4.
  [14]Misgeld T,Schwarz TL.Mitostasis in Neurons:Maintaining Mitochondria in an Extended Cellular Architecture[J].Neuron,2017,96(3):651-666.
  [15]Bellou V,Belbasis L,Tzoulaki I,et al.Environmental risk factors and Parkinson's disease:An umbrella review of meta-analyses[J].Parkinsonism Relat Disord,2016,23(4):1-9.
  [16]Bowling JL,Skolfield MC,Riley WA,et al.Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway[J].BMC Mol Cell Biol,2019,20(1):33.
  [17]Bayne AN,Trempe JF.Mechanisms of PINK1,ubiquitin and Parkin interactions in mitochondrial quality control and beyond[J].Cell Mol Life Sci,2019,76(23):4589-4611.
  [18]Wang R,Wang G.Autophagy in Mitochondrial Quality Control[J].Adv Exp Med Biol,2019,12(6):421-434.
  收稿日期:2020-03-27;修回日期:2020-04-06
  編辑/成森
转载注明来源:https://www.xzbu.com/1/view-15275724.htm